ÿØÿàJFIFÿþ ÿÛC       ÿÛC ÿÀÿÄÿÄ"#QrÿÄÿÄ&1!A"2qQaáÿÚ ?Øy,æ/3JæÝ¹È߲؋5êXw²±ÉyˆR”¾I0ó2—PI¾IÌÚiMö¯–þrìN&"KgX:Šíµ•nTJnLK„…@!‰-ý ùúmë;ºgµŒ&ó±hw’¯Õ@”Ü— 9ñ-ë.²1<yà‚¹ïQÐU„ہ?.’¦èûbß±©Ö«Âw*VŒ) `$‰bØÔŸ’ëXÖ-ËTÜíGÚ3ð«g Ÿ§¯—Jx„–’U/ÂÅv_s(Hÿ@TñJÑãõçn­‚!ÈgfbÓc­:él[ðQe 9ÀPLbÃãCµm[5¿ç'ªjglå‡Ûí_§Úõl-;"PkÞÞÁQâ¼_Ñ^¢SŸx?"¸¦ùY騐ÒOÈ q’`~~ÚtËU¹CڒêV  I1Áß_ÿÙELF>Э@P @8@`` hh&h&h &&$$@@@ Ptdppp,,QtdRtdhh&h&GNU[6{hX;C{GN% B `"p @@ 0 ,@@D:`@nIHdC1 (0b8Kk}LJ f|8\5M3ndy'IK}U=v^a#2ח*X3I#K霳N yME>=g!ni焽dMD.ۗqX|EڋFy$vWJ@IoS:rKffBE,_̩*1޺KFmK4bs\rb(zK|M&EX , ( g/(\p { 3 v& E  X  ~   iz | V _ o =Q p *Qdp  A I` ,E = UO b{R L d < 4 C>\lx, MF"q  % P{O+ um x @r=[  W1  \  pO yW i Њ- j~M  w"= l1 u/ ko  `  {  g2 t, n{  fW  0u  *I pI @hZ A y Pu,    Pn~ 0+   * +R PmR5 [ `*  5 0^A  P| h ` 3  Ќ * C * l  Pk+  @z   `*p q f `V  m  : `__gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_Py_NoneStruct_PyThreadState_CurrentPyNumber_IntPyErr_OccurredPyNumber_LongPyExc_TypeErrorPyErr_SetStringPyErr_FormatPyErr_NormalizeException__stack_chk_failPyExc_StopIterationPyErr_GivenExceptionMatchesPyObject_SetAttrrk_intervalmemcpyPyObject_GC_UnTrackPyErr_FetchPyMem_FreePyErr_WriteUnraisablePyErr_RestorePyObject_GetAttrPyModule_GetDictPyFrame_NewPyTraceBack_HerePyString_FromStringPyCode_NewPyString_FromFormatPyMem_ReallocPyMem_MallocPyExc_SystemErrorPyType_IsSubtypePyImport_ImportPyExc_ValueErrorPyOS_snprintfPyErr_WarnExPyDict_NextPyString_Type_PyString_EqPyString_AsStringPyUnicodeUCS4_ComparePyList_TypePyTuple_TypePyInt_FromSsize_tPyObject_GetItemPyExc_OverflowErrorPyErr_ExceptionMatchesPyErr_ClearPyNumber_IndexPyInt_AsSsize_tPySlice_NewPyExc_NameErrorPyDict_GetItemPyExc_AttributeErrorPyExc_ImportErrorPyLong_AsLongPyObject_CallPyDict_NewPyInt_FromLongPyObject_CallFunctionObjArgsPyList_NewPyTuple_NewPyDict_SizePyDict_SetItemPyCapsule_NewPyTraceBack_TypePyExc_BaseExceptionPyNumber_AddPyInt_TypePyLong_TypePyObject_IsInstancePyEval_SaveThreadrk_longPyEval_RestoreThread_Py_TrueStruct_Py_ZeroStructPyObject_IsTruePyFloat_FromDoublerk_standard_cauchyrk_standard_exponentialrk_gaussrk_doublePyCapsule_GetPointerPyNumber_Subtractrk_random_uint8rk_random_boolrk_random_uint32PyLong_FromUnsignedLongrk_random_uint16PyLong_AsUnsignedLongrk_random_uint64PyLong_AsUnsignedLongLongPyObject_Sizerk_standard_gammaPyGILState_EnsurePyExc_ZeroDivisionErrorPyGILState_ReleasePyObject_RichComparerk_binomialrk_negative_binomialrk_hypergeometricPyFloat_AsDoublerk_zipfrk_rayleighrk_powerrk_weibullrk_paretork_standard_trk_chisquarerk_exponentialPyFloat_TypePyObject_GetIterrk_lognormalrk_logisticrk_gumbelrk_laplacerk_vonmisesrk_normalrk_uniformrk_geometricrk_logseriesrk_poissonrk_betark_noncentral_chisquarerk_frk_waldrk_gammaPyString_FromStringAndSizerk_fillrk_triangularPyInt_AsLongrk_noncentral_f_Py_EllipsisObjectPyObject_SetItemPyNumber_MultiplyPyNumber_InPlaceAddPyList_AsTuplePyList_AppendPySequence_ContainsPyNumber_RemainderPyNumber_Orinit_by_arrayrk_randomseedrk_seedPyNumber_InPlaceDivideinitmtrandPy_GetVersionPy_InitModule4_64PyImport_AddModulePyObject_SetAttrStringPyString_InternFromStringPyUnicodeUCS4_DecodeUTF8PyInt_FromString__pyx_module_is_main_mtrandPyTuple_PackPyType_ReadyPyDict_SetItemStringPyCFunction_NewExPyImport_ImportModulePyObject_GetAttrStringPyCObject_TypePyCObject_AsVoidPtrPyType_ModifiedPyErr_PrintPyExc_RuntimeErrorrk_randomrk_ulongrk_devfillfopen64freadfclosegettimeofdaygetpidclockrk_altfilllogsqrtrk_strerrorpowexprk_binomial_btpefloorrk_binomial_inversionrk_poisson_multrk_poisson_ptrsacosfmodrk_geometric_searchrk_geometric_inversionceilrk_hypergeometric_hyprk_hypergeometric_hrualibpython2.7.so.1.0libpthread.so.0libc.so.6_edata__bss_start_endGLIBC_2.14GLIBC_2.4GLIBC_2.2.5/opt/alt/python27/lib64  ii  ui  h&p&@x&x&`* +p*+*+*+* +*+*P +*x +*+*x+*+ *+(* +0*+@*+H* +P*+`*+* +*0+*+*x +* +*+*0+ȳ*+*+*+*+ *+(*0+0*+@*h +H*p +P*+`*h +h*p +p*X+x*+*x +*+*x +ȴ*X+д*+*+*x +*+ *+(*8 +0*+@*x +H*+`*x +h*+*x +*+* +*0+*+* +ȵ*0+е*+* +*0+*+*+*+*+ *0+(*+@*+H*0+P*+`* +h*+p*X+x*+*+*+*+*+ȶ*+ж*+*( +*+*x +*+ *+(*+@*`+H*+P*8+X*+p*+x*+*+* +*+* +*+*+*+*+*X +*+ * +@*+H* +P*+X*H+*+* +*+*H+*+ȸ* +и*+ظ*H+*+* +*+*H+@*+H* +P*+X*H+*+* +*+*H+*+ȹ* +й*+ع*H+*+* +*+*H+@*+H* +P*+X*H+p*+x* +*H+* *Ⱥ*@+к*ڭ**8+*Э**0+ **@*(+H**h* +p***+***+***+*x**+*r*0*+8*h*X*+`*X**+*H**+*8*м*+ؼ*(**+** *+(**H*+P**p*+x***+*ج**+Ƚ*ͬ**+*Ǭ**+**8*+@**`*+h***+***x+**ؾ*p+*p**h+*X*(*`+0*P*P*X+X*H*x*P+*8**H+*(*ȿ*@+п***8+***0+ **@*(+H**h* +p*Ы**+***+***+*@**+**0*+8**X*+`***+*@**+***+***+** *+(*`*H*+P**p*+x***+***+*P**+*@**+**8*+@**`*+h***+***x+***p+*}**h+*}*(*`+0*y*P*X+X*`y*x*P+* r**H+*q**@+*f**8+*f**0+ *c*@*(+H*b*h* +p*U**+*@U**+*`R**+* R**+*`H*0*+8*@H*X*+`*`=**+*@=**+* 0**+*/**+*$* *+(*$*H*+P**p*+x*`**+* **+***+* **+**8*+@* )`*+h*)*+* )*x+*)*p+*)*h+*)(*`+0*)P*X+X*)x*P+*`)*H+*@)*@+*)*8+*)*0+ *)@*(+H*`)h* +p* )*+*)*+* )*+*)*+*`)0* +8*@)X* +`*@w)* +*w)* +*m)* +*`m)* +*`_) * +(* _)H* +P*@S)p* +x* S)* +*`J)* +*@J)* +*@)* +*@)8* +@*@:)`* +h*:)* +*+)*x +*+)*p +* )*h +* )(*` +0*@)P*X +X*)x*P +*`)*H +* )*@ +*`(*8 +*@(*0 + *(@*( +H*(h* +p*(* +*** +*p** +*P** +* *0* +8**X* +`*** +*Ȱ** +*** +*p** +*P* * +(*0*H* +P**p* +x*** +*** +*** +*** +*@*8* +@**`* +h*Ю** +***x +* **p +***h +**(*` +0*(P*X +X* (x*P +*(*H +***@ +*(*8 +*(*0 + *(@*( +H*p(h* +p*** +*(* +*`(* +*(* +*(0* +8* (X* +`*P(* +*(* +*(* +*(* +*@( * +(*(H* +P*(p* +x*(* +*0(* +* (* +*(* +*(8* +@*p(`* +h*(* +*(*x +***p +*(*h +*((*` +0*(P*X +X*(x*P +*(*H +*7(*@ +*(*8 +* (*0 + *(@*( +H*0(h* +p*(* +*** +*(* +*(* +*(0* +8*(X* +`*(* +*(* +*(* +*(* +*`( * +(*(H* +P*)(p* +x*(* +*(* +*(* +*(* +*"(8* +@*(`* +h*** +*(*x +*(*p +*(*h +*((*` +0*(P*X +X*(x*P +*(*H +*@(*@ +*(*8 +*(*0 + *(@*( +H*(h* +p*P(* +*** +*(* +*(* +*(0* +8*(X* +`*(* +*(* +*(* +*(* +*( * +(* (H* +P*(p* +x*`(* +*(* +*(* +*(* +*(8* +@*(`* +h*(* +*(*x +*(*p +*(*h +*((*` +0*(P*X +X*(x*P +*(*H +*}(*@ +*(*8 +*(*0 + **@*( +H*(h* +p*(* +*x(* +*s(* +*(* +*(0*+8*(X*+`*(*+*(*+*(*+*n(*+*( *+(*(H*+P*i(p*+x*d(*+*(*+*(*+*@(*+*`(8*+@**`*+h*_(*+*Z(*x+*(*p+*U(*h+*((*`+0*(P*X+X*P(x*P+*(*H+*(*@+*(*8+*x(*0+ *(@*(+H*(h* +p*(*+*(*+***+*(*+*0(0*+8*p(X*+`*0(*+*(*+*K(*+*(*+*z( *+(*F(H*+P*h(p*+x*t(*+*(*+* (*+*(*+*n(8*+@*h(`*+h*(*+*(*x+*`(*p+*X(*h+*((*`+0*p(P*X+X*b(x*P+*(*H+*`(*@+*A(*8+*<(*0+ *\(@*(+H*(h* +p*7(*+*(*+*V(*+*P(*+*2(0*+8*P(X*+`*H(*+*-(*+*((*+*#(*+*( *+(*P(H*+P*(p*+x*(*+*J(*+*@(*+*P(*+*(8*+@*(`*+h*p(*+*(*x+*(*p+*(*h+*((*`+0*(P*X+X*(x*P+*D(*H+*8(*@+*(*8+*(*0+ *@(@*(+H*(h* +p*(*+*0(*+*0(*+*>(*+* (x*ۧ******p**@***Ю * H***`***"* ( *(*8*(@*pH*`cX*(`*h***p** **"*@(***(* **( *F(*8*@(@*H*pEX*(`*Dh*Px*(***(**0*@(*q** w(** *s(****@f( *Ӥ(*@\8*a(@*H*VX*Y(`*h*`x*W(*N*I*@M(*-**`B(**0*@5(**@ * *(*D*?*@"( *ؤ(* o8*(@*٠H* X*@ (`*&h*@5x*(***'* ***'**0*'*آ*p*`'***' *٣(*8*'@*H* X*'`*h*0x*'***`'**@*`'*_**v'*$**h'*ͥ** \' *(*;8*`S'@*H*X*I'`*rh*x*C'*j**`5'**p,**'**X*`'**M*'*$**' *(*$8*'@*H*`X*'*`**ء*}*(**pf*(*ġ*`q*@(**p[*( *K(*8*(@*qH*X* (`*^h* x*(*y*D*`(**pP*(*\*e(&0&8&@&H&P&X&`&h&p& x& & &&&&&&&&&)&&1&&&2&&;&<&& &(&0&F8&G@&JH&P&X&P`&Vh&Wp&Xx&&\&&]&f&g&&o&q&&r&z&|&&&&&&&&&&&& & &&&&&& &(&0&8&@&H&P&X&`&h&p&x&&&&&&&&& &&!&&"&#&$&&%&&&'&(&* &(&+0&,8&-@&.H&P&/X&0`&h&3p&4x&5&&&6&7&8&9&:&&&&=&>&?&@&&A&B&C&& &D(&E0&8&H@&IH&KP&X&L`&Mh&p&Nx&O&Q&R&S&T&&&&U&Y&Z&[&&&^&_&`&a&b&c&d &e(&h0&8&i@&jH&kP&lX&m`&nh&pp&sx&&t&u&v&&w&x&y&{&}&~&&&&&&&&&& &HHc&HtH5]&%]&hhhhhhhhqhah Qh Ah 1h !h hhhhhhhhhhqhahQhAh1h!hhhh h!h"h#h$h%h&h'qh(ah)Qh*Ah+1h,!h-h.h/h0h1h2h3h4h5h6h7qh8ah9Qh:Ah;1h<!h=h>h?h@hAhBhChDhEhFhGqhHahIQhJAhK1hL!hMhNhOhPhQhRhShThUhVhWqhXahYQhZAh[1h\!h]h^h_h`hahbhchdhehfhgqhhahiQhjAhk1hl!hmhnhohphqhrhshthuhvhwqhxahyQhzAh{1h|!h}h~hhhhhhhhhqhahQhAh1h!hhh%T&D%T&D%T&D%T&D%T&D%T&D%T&D%T&D%T&D%T&D%}T&D%uT&D%mT&D%eT&D%]T&D%UT&D%MT&D%ET&D%=T&D%5T&D%-T&D%%T&D%T&D%T&D% T&D%T&D%S&D%S&D%S&D%S&D%S&D%S&D%S&D%S&D%S&D%S&D%S&D%S&D%S&D%S&D%S&D%S&D%}S&D%uS&D%mS&D%eS&D%]S&D%US&D%MS&D%ES&D%=S&D%5S&D%-S&D%%S&D%S&D%S&D% S&D%S&D%R&D%R&D%R&D%R&D%R&D%R&D%R&D%R&D%R&D%R&D%R&D%R&D%R&D%R&D%R&D%R&D%}R&D%uR&D%mR&D%eR&D%]R&D%UR&D%MR&D%ER&D%=R&D%5R&D%-R&D%%R&D%R&D%R&D% R&D%R&D%Q&D%Q&D%Q&D%Q&D%Q&D%Q&D%Q&D%Q&D%Q&D%Q&D%Q&D%Q&D%Q&D%Q&D%Q&D%Q&D%}Q&D%uQ&D%mQ&D%eQ&D%]Q&D%UQ&D%MQ&D%EQ&D%=Q&D%5Q&D%-Q&D%%Q&D%Q&D%Q&D% Q&D%Q&D%P&D%P&D%P&D%P&D%P&D%P&D%P&D%P&D%P&D%P&D%P&D%P&D%P&D%P&D%P&D%P&D%}P&D%uP&D%mP&D%eP&D%]P&D%UP&DH=N*HN*H9tHP&Ht H=N*H5N*H)HHH?HHtHQ&HtfD=N*u+UH=Q&Ht H=I&dmN*]wH10HtHc*HPHP&HHP HP(HATIUHSHH Ht HՅuH{(1Ht[LH]A\fD[]A\Ðf.UHSHH4P&H HH] HHHt H/t?HH}(HH](HHtH/tH1[]fHGP0H1[]HGP0USHH[O&HHHHHhPHxHHXXHpPHPXHtH)tMHtHmt1HtH+tH[]HCHH@0H[]DHEHP0@HAHP0@USHHN&HHH`HhhHx`HXpHphHPpHtH)tMHtHmt1HtH+tH[]HCHH@0H[]DHEHP0@HAHP0@AAxgIcȉH9|QE~TE1}6DHE9~#C4HcH 9~AE991f.SHGHu^H@`Ht?Ht+HHHt!HCHtfH[ÐHu&HHt11H[fHHH[@H4HHM&H5H8L@HL&HH5H81H+uHCH1P0f.AUIATIUHSH(dH%(HD$1HT$Ht$HHL&HHCHHCHH$HCPHCPHD$HCXHCXHD$H{HH$HHD$HHD$HH $HT$HD$IMI$HEH{`LchHkpHK`HShHCpHtH/t]MtI,$tAHtHmt%1HL$dH3 %(H([]A\A]@HEHP0@ID$LP0HGP0H$IEI$HEHtH*tYHT$HtH*t9HT$HtH*t\H|$HGP0f.H|$HGP0fH<$HGP0@f.AUATUSHHJ&HHkHHu1H[]A\A]fDHK&H0H9umLkPLcXHCHHCPHCXHmt*MtImt.MtI,$uID$LP0DHEHP0@IELP0H u_HOHHtfDHAHHtH$d@AWL~AVAUATUSHM~|LL $IHHLD$ILfIvLdL9t=IHL$H<$HL,LHHLH4$HHL)IuHI&HH[]A\A]A^A_Df.SHH dH%(HD$1HHT$Ht$H{HHt HC^HtHH+H<$HT$Ht$H{ HtHC H/tSH{(HtHC(H/t,HCH@HD$dH3%(u(H [fHGP0HGP0fHWHHtfDHB@HtH$4@AVIAUAATAUSHu@LZ*MD5Z*LDA9HHIA9*IZHH=Z*Ht^HHG&1HH8GHHt?D`|HH+u HCHP0Hmu@ŅuI$HKH5HPHCD&H81 AVAUIATIH=USHdH%(H$1HHHH+HHLIHHHI.Hu IFLP0Hmu HEHP0HtrHCL9k tWHNC&LHH5H81H+u-HCH1P0!HmuHEHP01H$dH3 %(HH[]A\A]A^@HCHP0fHH61MHH 11HyMHB&LHH5H81>@AWIAVIAUATUHSHHHLD$Ll$(dH%(HD$81HD$ HD$ HD$HD$0HD$(HD$0HD$@HT$Ht$LLmHt$ H IH]HH91uf.H92HHHuHFH;A&It;fDII $Ht3H9HFH9GuIHt$ I $IHu@H9uEfHIH9t0HEH8H9t}HFH9GuueHt$ HIH9uLHT$H5HWHT$(H)ILHL$(H)I I<$Ht$ I`LD$ LCHT$H5HH}@&H81CH\$8dH3%(PHH[]A\A]A^A_HHtVH9IH9t,LtII$LD$ Ht'H8L9uLHL$(H)I I<$LD$ H9HEH8I9L"xnHLD$ H9HEH8L9uI HcHFH;?&H fHtH*?&HT$H5H81DUSHHHGH;?&H;o>&t=HhhHHEHHy HH[]f.HHHH?t{uwH>HHH?H9}lthHDHH[]HHHH?t3u/H>HHH?H9},t(HSHHH[]DHHH@HHthHHHm{HUHD$HR0HD$bfHUHHt$Ht$HxHHEfD1"H=&Ht$H8eHt$tHt$HEHt$@AWAVAUATIUSHHHGDl$PHhhHLU MEɸHDEuUHtkH9H;=q=&t_IHHnImHuH$IELP0H$HtlHx|LU HHL[]A\A]A^A_A@H@HhpH+LUMMtiI0HL[]A\A]A^A_AfHHHEHwH$LH$HH¸LU HHPEu{L=l<&E1HH1HV<&LIMtI.u IFLP0MLLUImHu IELP0HH[]A\A]A^A_fDHHL$H$IHt3IH$HL$efDHPHE;&H5~H811Eu8H;&H>He;&H$H8tLU H$@H+HHt9HT;&HLIMtI.t;H+HCHP0MmI.cIFLP0IFLP0ff.UHSHH=8M*HWHHt HHHt+HH[]fHB@Ht-Hu$H@H:&HU$H5H81HHf.SHHH=L*MHtH[fH[GUHSHHOHHtHHt%HH[]HA@Ht@Hv$H@H):&H8ItH:&HU$H5H81 RHf.USHHHGHH@`HtcHtOJHHHtEHKHtnHkH+u HCHP0HH[]Hu.Ht\HHH[]HH#HlHt@HߩtuHfH)8&H57H8 H 8&LAH5&HH81H+[HCHHP0'H @USHHHGHH@`HtcHtOHHHtEHKHtnHkH+u HCHP0HH[]Hu.Ht\HHH[]HHH Ht@HߩtuqHfH6&H5H8H6&LAH5HH81aH+[HCHHP0'H @USHHWH5;A*HHHHH5H*1HHt7H+tH[]f.HSHD$HR0HD$H[]DH+7u HCHP0H %H=H1[]HB@HtH$SfD7H>@AWIAVAUIATUSHH=-H*H5NB*HWHHrHHE1M H=H*IH(sHHHH2HIMHjLLHHD$1~LT$IIHIZYHHmtrf.MtI,$t4HtH+tHL[]A\A]A^A_HCHP0@ID$LP0HmAu1IfDHEHP0@IBLP0Hmsِ1IHtIf1E1Hm@fDHB@Ht'H$|fDE1E1HVf.ATIH5;*USHWHHHHRHHI$1HHL`IHEMHHEtNH+t0I,$tHj3&H[]A\fID$LP0HCHP0I,$uDHEHP0H+ufDA@7DH j(H=o[1]A\HB@HtcH$fDHHEt>H+AG7uHCHP0fDHmAB7uHEHP0z@HEHP0HAUATUSHHH1&HHkHHu1H[]A\A]DH2&H0H9LkPLcXHCHHCPHCXHmtnMtImtrMtI,$uID$LP0fH/uHGHt$P0Ht$H1&HH5H81L@HEHP0@IELP0H?ff.AUATIUSHH-:*H=C*H)H@HHHSH5N9*HHHHHHHHSHHUH5g=*HHHHHEHHEHHIT$H5:*HHuLIM|H5B*1LKHHI,$tXHH~B*HXHHP Hh(H[]A\A]HCHP0'HEHP0XID$LP0HA7HHDH +H=H1[]A\A]f.A7HuHCHP0HtHmuHEHP0HB@HH$Lf.HB@HH$kf.A7HKHB@HH$ufH+HCHA7P0 H+u HCHP0I,$A7ID$LP0HA7HHHHwHHLIA7|fAVAUATUHSHH dH%(HD$1HQHCHHHMH5D5*HHHHHHPIHH1HHHXIHSHmImDH+u HCHP0HL$dH3 %(LH []A\A]A^@HgHHHvH5o?*1HIHEMHHEuHEHP0t@HEHP0Im[IELP0L@HIeHHD$Lt$Ll$HD$1LLLQHD$H@H;(,&tHuH+&HH5ME1H81fADADDE1H nH=xHA@HHH$HfADAfHA@HHH$HfADA{ADHmA]HEHP0NfHHEHEHADAP0#ImAEuIELP0H|$HDHH5^E1HHy*&H81?HHHrHADA@AVAUATUHSHH dH%(HD$1HaHCHHHMH52*HHHKHIMZ%IHH51*HHH5X<*LLHHaI,$ImH+u HCHP0HL$dH3 %(HH []A\A]A^@HgHIMvH5;*1LeHI$HHI$uID$LP0sID$LP0ImZIELP0KHIHHD$Lt$Ll$HD$1LLLSHD$H@H;(&tHuH2(&HZH51H81KApDH D1H= fDADImu IELP0I,$NuID$LP0HA@HH$HIfLA|D{HA@HH$HIfNADKHI$ID$LLA~DP0"ADLDAD+H|$HHH51HH&&H81HIHITLA~D@AVAUATUSHHL%&&HndH%(HD$1L$$HHH"HHuH eHIHHvH?L HLIL@HH&&UHRH5H81X0ZH H=HL$dH3 %(H[]A\A]A^fIHHHHFHH$HAL$$D11HCHHHHC(H($Hk(L-y2*H=8*LHHFHH57*1HiIHEMHPHUHu HEHP0HC H(u H{ HGP0HSH5,*Lk HHHHHHHI$1HHL`IHH+toHmtHI,$sID$LP0cLfH{(HGP0HEHP0I,$!@HCHP0HmuDLAF0ADHHH sDDH=rDAA70f.HHEHEHAAH0P0f.HL~HLH5I)0 fHB@HH$Lf.AAX0/AZ0H+AHCHP0HmA_0uHEHP0HIHH5**LH$H$ID$H^HAAH0USH8H|$dH%(HD$(1HD$ HD$HHHD$H R"&HH9HHD$ H9H ʄHHD$ H5!&H9pH|$HGHT$ Ht$H|$Hv!&HT$HHxHHhPHPHHT$HXXHPPHT$ HPXHt H/uHt HmHtH+ffDHD$(dH3%(H8[]DH|$HD$ HGHH|$tiH &H5H8HT$Ht H*HT$Ht H*HT$ HmH*cH|$ HGP0RfHD$H|$HH &H|$H0H &H5H8hHD$HD$ HH9 6H|$HGP0TH|$HGP0(HGP0@HCHP0HEHP0lHy&H5zH8ZAWAVAUATUHSHXH^dH%(HD$H1HD$0HD$8HHH^Lv HD$H;r&HD$ HD$(2H&HHh`L`hLhpHtHEMtI$MtIEL='*H=1*LHHHD$HHH5+)*HHHHD$ HHT$H*HD$FHD$HHH|$ 1HHXHD$(HHT$ H*HD$ HT$H*|HD$IHD$HxHD$(IGIMw HD$(HD$HtHmu HEHP0MtI,$u ID$LP0MtImu IELP0fI?u IGLP0HL$HdH3 %(L'HX[]A\A]A^A_H]fDHH&HnH5SL AH CH81X/ZH 6H='E1qIHD$HILpHD$/H|$HGP0H|$HGP0sH|$ HGP0CIHHHH8H5#*LIvIHD$0HH5u'*LUHD$8HsIEH6H\$0Lt$8L0D$^/HD$HHT$ HtH*u H|$ HGP0HD$ HT$(HtH*u H|$(HGP0HD$(HT$HtH*u H|$HGP0HD$H=-*t$;H=`H ʻHT$ Ht$(H|$IHHH=>&1HHXHHI/HIHHLpHD$HT$HIH+H*HT$H*tHD$HT$(H*t[HD$(HT$ H*t7LLHHD$ 0IGLP0OfH|$ HGP0fH|$(HGP0fH|$HGP0pHBHP0OfHCHP0HT$(@HQ@HLH$fD$`/D$c/D$/A<1E1LLHOHT$HtH*u H|$HGP0HT$ HtH*u H|$ HGP0HT$(HtH*u H|$(HGP0MtI/u IGLP0HtH+u HCHP0t$DE1H ZH=d/D$h/A;1E1+D$l/HF HHD$8HFHD$0FNHFHHD$0/I1A8D$>/1D$/A=D$/A=E1D$/A=}ID$/A=gHT$0HLLH5).HHI&H H5 jL AHH81Y^.>H'譿f.SHHHWHtHGH[@t H[Gu}HB`Ht^HtwHHHt@HKHtdHCH+uHSHD$HR0HD$wHtHHaHHHt׾H HzHߩt[H&H5H8ѾH&LAH5HH81H+wHCHP0H1fAVAUIH=^(*ATIUH-*SHH_HHHSH5*HHHHHHHeHHHHH&Hk(HLHHCH&HHC ֽHHPHH8L5*H='*LoHHHHSH5 *HHHHHHHHH+QHHI$1HHL`IHHmvH+u HCHP0IUH5*HHLHHҾHHI$1HHL`IHHmIH+ImI$LHPI$I$Hu ID$LP0H[]A\A]A^DHCHP0諽HHHHSH5`*HH0HHHHHH5HHHI$1HHL` IHEMHHEHEHP0{HCHP0IELP0HCHP0ImfHEHP0H+f.HCHP0HCHP0%Hr{HH1H H=H[]A\A]A^ÐAt{AHHDE1HCHP0M.LE1Ef.HB@HH$-f.E1AAw{HmtrHtH+u HCHP0H DD1H=ϼ MI$1HfH+bHm1A{ADHEHP0@HA{AL8{HHDLHHYH G{H= GfHB@HH$]f.{H H=ȻfDHmA{A@AA{HB@HH$f.HE1A{ATHB@HH$ f.A{AE1AA{@HEHA{AHp@HA{AHEIHVH ˯{1H=HHLܼHH̼H=H輼HHCHP0HmA{A9{9H 7DD1H=9H {1H=ڹAWAVAUATIUSHHH^H|$dH%(HD$81Hc&HD$ HD$(HD$0HH]H;HHHH ԮHOHmL ۭLOLDHHt &SHH55H81+X_EZH 'H=E1)HL$8dH3 %(L HH[]A\A]A^A_H &HD$HMd$I$H=*HEH *H;-U &HOIHHIWH5*HHDLHIHIH Hu IGLP0H=*H5t*HWHHIM*赸IHIH5*LH臹H5*HLmH5*LLcIHGI/u IGLP0I.u IFLP0ͶIHqLhH*1LHHIF IHH+u HCHP0I.u IFLP0I/u IGLP0H|$H5*HWHHIMH5 *HhIHHHI$Lp L`TIHHT$H5*H$H*H5*L&LHLIIEMrHIEbH+xI.^fDI,$u ID$LP0HmHEHP0@裴IH7HIUH58*HH`LIIEHM'IEHu IELP0H=U*H5*HWHHIMHHH5d*LHٶH5:*HL϶IIEMHIEu IELP0H+u HCHP01HHLxHr*1HLHHC eIHI.H+I/H< &I$H 0 &HHD$HHSH*HI,$%LI-fHF(HD$Il$ lDH&HD$f.HHHtH|HF(HD$0ID$ HHD$(ID$HD$ 8IHHM~*H5*H]HHD$0IMHD$0Ld$ Hl$(HD$fHH迭IH5e*HIHD$ HM~H5/*HױHbHD$(IOHIHmH EH=f.D$D$EI.uIFLP0HtH+u HCHP0MtI/u IGLP0T$t$E1H ~H=m舾M7Df.D$D$E{ID$LP0HV *HAHP0IGLP0fHCHP0LIFLP02IELP0IFLP0HCHP0yHhIHH EE1H=蜽OD$D$EI.HD$D$EfHB@HH$f.HB@H~H$f.D$ED$0H4nf.D$EfDIED$FD$HIEHuIELP0ME1@IED$ED$H-&HIED$FD$HfDH +EE1H= (D$ FD$eHB@HcH$H|$DIED$F1D$HIEE1HHE1D1D$EH-&D$DHB@HH$fHFHHD$ 蟩IIED$FD$H{IED$ED$HEHB@HH$`f.E11H-l&D$D$EOIED$FD$HD$D$EIED$ED$H-&H@HD$EH-&D$I.H-&D$D$EE_D$H-&D$EHD$FD$-HT$ HHLdH5,)w NEqLݯHЯIUH|$辯IfL讯II\$藯If.AWAVAUATIUSHHH^dH%(HD$81H&HD$0HHHHnI\$ HH;-s&Md$L-9 *H=*LZIHHIVH5 *HH'LIIHM'IH;葫IHUHE1LLHhH&HIF HIEH`HIE"I.H}H*uH} HSH5 *HD$HEHD$ HH`HIMoHSH5 *HHHIMSH5l*1LIHI.I/H%HHPhLx`H@pHT$HD$MtIHD$HtHHD$HtHhLt$ HD$(HD$I HL$H~LIlIFL;t$uH|$(臥MtI/u IGLP0HL$HtHHD$HHu HAHP0HL$HtHHD$HHu HAHP0H5*1LImIM0L;%%L;%%u L;%%I,$DH}H+HCHP0}HH;H +HIHH<H?L HLIL@HH%SHwH5H81XH8ZH {ZH=91~HL$8dH3 %(HHH[]A\A]A^A_H-%I@IFLP0HEHP0IFLP0H}fIELP0I.f.IGLP0oIFLP0I/Zf.IELP0HLبI,$Au ID$LP0 EYH X[H=]Hmu HEHP0H+H %g81H=ܝ#fDHSH5% *HH]HHH<HSH5 *HHqHIM@H5*1L/IHcImu IELP0I.u IFLP0H%HLp`LxhLhpMtIMtIMtIE蛨LHD$辥H|$IMtI.u IFLP0MtI/u IGLP0MtImu IELP0H52*1H`HmIu HEHP0ML;-l%L;-2%u L;-,%uRImtYLЧHHsVf.H SH=] L舦Imu IELP0TxDHHdHHFHHD$09HKHl$0f.LxX IHRDHCHP0gHT$0HHL^H50);y;8DHB@HH$fAXA IH1IFLP0H DDH=ɚ#HDAXA ImE1IELP0MpIHf.HAXA IEuHIHH5*HHHD$0IE}fDHB@HH$f.3 fDIEA5 HIEuIELP0MtI.A[H [DH=DHB@HH$.fIEA7 HIEuf.Tm1HB@HH$f.HmTofDHB@HH$yf.Hmt8ATAq$ fDTHEHATAqP0LI?HIHIHޤHHΤIQHEHP0 HEHP0bH VDDH=Z DAWAVAUIATIUHSHHH;%D$L5)H= *HL蝠IHHIWH5R*HHLIIHMIHԠIHH1LLHXHI%HIG HIH%HIu IFLP0I/u IGLP0H;u HCHP0H;*sH{ IUH5;*HD$(HCHD$0HH%LIMIUH5 *HHLIM(H5*1L7IHkI/AIm&H%HHH`HphH@pHL$ Ht$HD$HtHHD$HtHHD$HtH藡L|$0HD$8HD$(M,H~ D$HIAIGM9uH|$8赚H|$ tHT$ HHD$HHHL$HtHHD$HHHL$HtHHD$HHuH5n)1LI.HGHH;-'%H;-%H;-%H荟HmAf.IGLP0cHQH5-*HHLHHIUH5 *HHLIMH5*1L7IHI.ImH%HLp`LxhLhpMtIMtIMtIE诟HD$HD$AH|$HMtI.u IFLP0MtI/u IGLP0MtImu IELP0H5)1HpH+IM*L;%%L;%I%L;%?%LI,$i+"H mH=L1u IELP0IGLP0ImfIFLP0HAHP0|HAHP0MHBHP0IELP0[IFLP0ImEfHCHP0HmD1HEHP0<,EH |H=V1HHPHHu HCHP0HHH[]A\A]A^A_@H+AIt`@IHI1Hu_IGLP0H DH=ڑHtPH1HPzf+AI.uE1IFLP0MuDH DH=谧1CfI,$u.ID$LP0fDHHHBHfDH蠜HH{+DLش+IH DHB@HH$ f+A+MfDHB@H\H$f.HB@HLH$f.I+HIcIFLP0MPI/AAH KH=#NIfI+HItDHB@HH$ *yHB@HH$H+*J@H+t)*A8,e+HCH߽*AP0L诛IL蟛IjL菛IHHJLoIfHCHP0EH DAWAVAUIATIUSH8H;}%H|$zL5C)H=)HLaIHHIWH5)HHNLHIHHNIHL5)H=d)LIHpHIWH5y)HH!LIMI/u IGLP06IHbH1HHHXLp qHHHmJI/ H;H)sH{ IUHkHD$ H5)HHLIMIUH5)HH2LIMH5*)1LIH$I/ImH@%HHHhLx`H@pHL$HD$MtIHD$HtHHD$HtH%HD$(HD$ LlH~H|$HAEL9uH|$(PMtI/u IGLP0HL$HtHHD$HHu HAHP0HL$HtHHD$HHu HAHP0H5)1L谗I.HHH;-%H;-%H;-%H)HmAEH H=1賡HHPHHu HCHP0H8H[]A\A]A^A_IGLP0HQH5})HH]LHHdIUH5Y)HHYLHHhH5)1H臖IHHmI/H%HLx`LphLhpMtIMtIMtIEH|$HAHD$FMtI/u IGLP0MtI.u IFLP0MtImu IELP0H5)1HŕH+H8HH;-%H;-%H;-%H>HmH ˆH=1ʟ+DHCHP0IGLP0H;f.HEHP0I/f.IELP0BIGLP0Im,fIFLP0IGLP0;HEHP0I/&f.HCHP0LA肬IHuHmuHEt$HP0t$M,IHIH1IGt$LP0t$DH `H=UjHH1HPHmDu5HEHP0[fDHmu.HEHP0&HHHBHRfDD$MHHGfLhIHDHmI.IFLAP0H ^DH=Pe1fDHB@HH$fAAOHB@Ht H$L6IfDHEHP0I.TAY@AHB@HH$f.fDIHIIFt$LP0Mt$I/AH 3H=#8HB@H H$f.IHItDHB@HH$fGHB@HH$f.H+udIHCt$HP0Ht$E1AHKAHH뺾gIXL_HLOIL?IH/HLHA\f.AUATIUHSH(H-%H^dH%(HD$1HT$MHH HHH HIHHH?L 1HLIL@HH@%SH!H5H81XTZH M H=1HL$dH3 %(XH([]A\A]HHMHFLHD$HHT$fDH] H5%HH}HmHt8H+xHSHD$HR0HD$_DHVf.H+t2 H THD$H=%HD$fDHSHD$HR0HD$HT$HLLقH5ٖ)脞)TfLIH H5)L-HtHD$IEEDAUATIUHSH(H%H^dH%(HD$1HT$MHH HHsH cHIHHtH?L HLIL@HH%SHH5H81跍XJZH H=踗1HL$dH3 %(XH([]A\A]HHMHFLHD$謅HHT$fDH] H5U%HH}H-Ht8H+xHSHD$HR0HD$_DHVf.H+t2H KHD$H= ؖHD$fDHSHD$HR0HD$HT$HLLH5)D)JfL踄IH H5m)LHtHD$IEDAUATIUHSH(H%H^dH%(HD$1HT$MHH HH3H #HIHH4~H?L HLIL@HH%SHH5H81wXlFZH s~H=Չx1HL$dH3 %(XH([]A\A]HHMHFLHD$lHHT$fDH] H5%%HH}HHt8H+xHSHD$HR0HD$_DHVf.H+t2 H }FHD$H=蘔HD$fDHSHD$HR0HD$HT$HLL~~H5ِ))_FfLxIH H5-)L譆HtHD$IEńDAUATIUHSH(Hm%H^dH%(HD$1HT$MHH HH|H |HIHH{H?L qHLIL@HH%SH}H5AH817X7ZH 3|.H=81HL$dH3 %(XH([]A\A]HHMHFLHD$,HHT$fDH] H5%HH}HHt8H+xHSHD$HR0HD$_DHVf.H+t2XH X{7HD$H=݆XHD$fDHSHD$HR0HD$HT$HLLN|H5)ė)7fL8IH H5)LmHtHD$IE腂DAWAVAUIATIUSH8H;-%H<$D$L5)H=w)HL IHHIWH5)HHYLHIHHYIHL5)H=)L觃IH{HIWH5$)HH,LIM I/u IGLP0IHmH1HHHXLp HH HmUI/+H;Hj)sH{ IUHkHD$ H5a)HHLIMIUH5=)HH=LIMH5)1LkIH/I/ImH%HHHhLx`H@pHL$HD$MtIHD$HtHHD$HtHЄHD$(HD$ LlH~@D$H<$HAEL9uH|$(}MtI/u IGLP0HL$HtHH$HHu HAHP0HL$HtHH$HHu HAHP0H5)1LUI.HHH;-h%H;-.%H;-$%H΂HmA8EH PwH=x1XHHPHHu HCHP0H8H[]A\A]A^A_DIGLP0fHQH5)HH]LHHdIUH5)HHYLHHhH5)1H'IH}HmI/H%HLx`LphLhpMtIMtIMtIE蟂H<$D$HAH${MtI/u IGLP0MtI.u IFLP0MtImu IELP0H5)1HaH+H4HH;-t%H;-:%H;-0%HڀHm`H ^uH=v1f"HCHP0IGLP0H;f.HEHP0I/f.IELP07IGLP0Im!fIFLP0 IGLP0;HEHP0I/&f.HCHP0LA"IHjHmuHE4$HP04$f.M,IHIH1IG4$LP04$H tDH=Mu HH1HPDHmDu5HEHP0VfDHmu.HEHP0*HHHBHMfD$|HHCrLIHDHmI.IFLAP0H rDH=Ft1fDHB@HH$fAAOHB@Ht H$LIfDHEHP0I.TAY@AHB@HH$f.fDIHIIF4$LP0M4$I/AH qH=sڈDHB@H H$f.IHItDHB@HH$fHB@HH$f.H+ubHC4$HP0H4$E1AHAHH뼾4\m^L~HL}IL}IH}HL}HA^Df.AWAVAUIATIUSHHH;%H|$D$L$L5)H=)HLyIHHIWH5Z)HHrLHIHHrIHL5)H=)L@yIHHIWH5)HHELIM$I/u IGLP0zyIHH1HHHXLp {HH9HmnI/DH;*H)sH{ IUHkHD$0H5)HHLIMIUH5)HHVLIMH5n)1L{IHHI/ImH%HHHhLx`H@pHL$ HD$(MtIHD$ HtHHD$(HtHizHD$8HD$0LlH~'DL$D$HH|$AEL9uH|$8sMtI/u IGLP0HL$ HtHHD$HHu HAHP0HL$(HtHHD$HHu HAHP0H5)1LyI.HHH;-%H;-%H;-%H]xHmAEH lH=@n1HHPHHu HCHP0HHH[]A\A]A^A_@IGLP0fHQH5)HHmLHHtIUH5)HHiLHHxH5!)1HxIHHmI/H7%HLx`LphLhpMtIMtIMtIE/xH|$L$HD$AHD$jqMtI/u IGLP0MtI.u IFLP0MtImu IELP0H5)1HwH+H<HH;-%H;-%H;-%HbvHmH jH=Gl1fHCHP0IGLP0H;f.HEHP0I/f.IELP0IGLP0ImfIFLP0IGLP0+HEHP0I/f.HCHP0LA袎?IHQHmuHEt$HP0t$M,IHIH1IGt$LP0t$DH iH=j芀HH1HPHmDu5HEHP0GfDHmu.HEHP0"HHHBH>fDD$mrHH3*fL舍:IHDHmI.IFLAP0DH ~hDH=i1fDHB@HH$xfA<AAOHB@Ht H$LVuIfDHEHP0I.TADY@LAHB@HH$f.pfDIrHIIFt$LP0Mt$I/AH SgH=hX~HB@H H$f.ItHItDHB@HH$}fHB@HH$f.H+udHCt$HP0Ht$E1AHAHH뺾tcTLsHeLosImL_sIHOsHL?sHDA\f.AWAVAUIATIUSHHH;M%H<$D$L$T$L5)H=)HL oIHHIWH5)HHmLHIHHmIHL5)H=#)LnIHHIWH58)HH@LIMI/u IGLP0nIHH1HHHXLp 0qHH4HmiI/?H;%H~)sH{ IUHkHD$0H5u)HHLIMIUH5Q)HHQLIMH5)1LpIHCI/ImH%HHHhLx`H@pHL$ HD$(MtIHD$ HtHHD$(HtHoHD$8HD$0LlH~'T$L$HD$H<$AEL9uH|$8hMtI/u IGLP0HL$ HtHH$HHu HAHP0HL$(HtHH$HHu HAHP0H5K)1LaoI.HHH;-t%H;-:%H;-0%HmHmALE(H \bH=c1dyHHPHHu HCHP0HHH[]A\A]A^A_fIGLP0HQH5-)HHmLHHtIUH5 )HHiLHHxH5)1H7nIHHmI/H%HLx`LphLhpMtIMtIMtIEmH<$T$HL$D$AH$fMtI/u IGLP0MtI.u IFLP0MtImu IELP0H5W)1HemH+H8HH;-x%H;->%H;-4%HkHm!tH b`H=a1jwDHCHP0IGLP0H;f.HEHP0I/f.IELP0#IGLP0Im fIFLP0IGLP0+HEHP0I/f.HCHP0LA%"IHVHmuHE4$HP04$f.M,IHIH1IG4$LP04$H _DH=y` vHH1HPDHmDu5HEHP0JfDHmu.HEHP0&HHHBHAfD$gHH7#L%IHDHmI.IFLA%P0H ]DH=r_u1fDHB@HH$}fA%A%OHB@Ht H$LjIfDHEHP0I.TA%Y@A%HB@HH$f.fDIHIIF4$LP0M4$I/A(H \(H=G^sDHB@H H$f.IHItDHB@HH$}f!HB@HH$f.H+ubHC4$HP0H4$E1A!HA!HH뼾Hy!pi!ZLiHlLhItLhIHhHLhHA%^!Df.AWAVAUATUSHHXHndH%(HD$H1HD$ HD$(HD$0HD$8HRHHnLn Lf(H~01gIH-LHBhIH6H@HIE$H<>Imu IELP0HUH.H]HH9}TL;%չ%H-)H=))HcIH5HIUH5v)HH~LHIEHH}IEHL=9)H=)LZcIHHIUH5G)HHgLIIEHMfIEHcIHSI$1HHL`Lx eIHHmu HEHP0Imu IELP0I<$u ID$LP0H)At$I|$ Ml$I5e4$MHLL _Hu^I<$ID$LP0f.L]IH5~)LIbHD$ HXHkHHu%HYH57bUL :_AH XH81eX( ZH Y8H=YE1oHL$HdH3 %(LCHX[]A\A]A^A_IELP0IELP0XL6]b 4$HL$M]H)H=y)HaIHHIUH5)HHLHIEHIEHaHu IELP0H|$_cIHs)aHH}L`1HHlcIHHmH+HCHP0@H>IH|oHcH>f.HF0HD$8HC(HD$0HC LHD$(HCHD$ [IH;~SHPHu!H5)L_HD$8HIMHl$ Ll$(Ld$0H|$8HucHz dIHfH GWH=TWE1lD;`HX [fDb ]@HHH5>aH%H8W]_H$H_H_HuH$%H52TH8]D_HHH/%H5`H8\fDHEHP0fIE HIEdHu&IEt$ L$P0$t$ DHHmHEt$ H$P0$t$ gHFLHD$ _YIH5)L]HD$(HIH5)L|]HD$0HI`^HpH5h_UIEd ]HfIEH1dHHtH藛H+HSH$HR0H$]HrCo ^dHB`HHHv^H,YHHHMH&H]HmYHEHP0J@LHw dIH3DHB@HBH$lf dHv bIHrDHB@HH$f fDd I/@IGt$ L$P0t$ $s bH@HB@HH$Tf. HmbI1@I,$ uID$4$LP0Hmb4$ƐIbHݾ 5HT$ HLLRH5i)m HH%H jQH5ZjL WAHuRH81]Y^ HH˯%AH5ZjL WH QH8H-R1m]_ AXOHH%L YWH5GZjAH PHQH81']AY AZLa]H+LQ]IHEH+HHWH OHL ]HHtKdZHwWH%LAH5WHH81x\HmHEHP0~vHAWAVAUATUSHHXHndH%(HD$H1HD$ HD$(HD$0HD$8HZHLnLf Hn(H~01[IH-LLR\IH6H@HID$$H<=I,$u ID$LP0IEH,IEAH9<ZH;-%H)H=6)HWIH2HIT$H5)HHLHI$HHI$HL=E)H=ο)LfWIHHIT$H5Ҹ)HHLII$HMI$HWIHHE1HHHhLx YHHxH+u HCHP0I,$u ID$LP0H}u HEHP0H)uH} LeIEY4$AMHLLlYHRH}HEHP0f.LQIH5)LI"VHD$ H8HkHH%HNH5GVUL JSAH LH81(YXZH MH=M1'cHL$HdH3 %(HHX[]A\A]A^A_ÐID$LP0ID$LP0\LmV 4$HL$AM6XH)H=)H UIHHIT$H5)HH4LHI$HI$HHu ID$LP0|$mWHH7UIHHh1HHzWHH.H+I,$ID$LP0fH6IHcHcH>fHF0HD$8HC(HD$0HC LHD$(HCHD$ OIH~SH0Hu!H5)LSHD$8HIMLl$ Ld$(Hl$0H|$8HucHns1IHfH WKH=vK1`fDKTH (fD**@HHH5NUHϨ%H8gQSH$LSHHH5THo%H8QSHAfDHCHP0fI$HI$1Hu&ID$T$L4$P04$T$@HH+HCT$H߉4$P04$T$HFLHD$ MIH5%)LQHD$(H?IH5,)LQHD$0HIRHH5SuFYHHtHH+HSH$HR0H$I$,*HI$H1RHwH5S\7+XHHtHnH+HSHD$HR0HD$Lkx1IH{?DHB@HJH$f.u11HhkU/IH-DHB@HH$fzfD1}I/@IGT$L4$P0T$4$W/HPHB@HH$f.ZH+/I1DHm\uHE4$HP0H+/4$t@Iߺ/La5HT$ HLLDGH5])=bZ:HH%H EH5BOjL DLAHFH81"RY^HH;%AH5NjL LH EH8HF1Q_AXHH%L KH5NjAH 9EHlFH81QAYAZhLQHLQILQH4L@AWAVAUATUSHHXHndH%(HD$H1HD$ HD$(HD$0HD$8HZHLnLf Hn(H~01PIH-LLRQIH6H@HID$$H<=I,$u ID$LP0IEH,IEAH9<ZH;-%H)H=6)HLIH2HIT$H5)HHLHI$HHI$HL=E)H=δ)LfLIHHIT$H5*)HHLII$HMI$HLIHHE1HHHhLx NHHxH+u HCHP0I,$u ID$LP0H}u HEHP0H)uH} LeIEN4$AMHLLHHGH}HEHP0f.LFIH5)LI"KHD$ H8HkHH%H+CH5GKUL JHAH AH81(NXZH BH=B1'XHL$HdH3 %(HHX[]A\A]A^A_ÐID$LP0ID$LP0\LmK 4$HL$AMFH)H=)H JIHHIT$H5)HH4LHI$HI$HHu ID$LP0|$mLHH7JIHHh1HHzLHH.H+I,$ID$LP0fH6IHXHcH>fHF0HD$8HC(HD$0HC LHD$(HCHD$ DIH~SH0Hu!H5)LHHD$8HIMLl$ Ld$(Hl$0H|$8HucHc0IHfH W@H=@1UfDKIH7'fDA)@HHH5NJHϝ%H8gFHH$LHHHH5IHo%H8FHHAfDHCHP0fI$HI$0Hu&ID$T$L4$P04$T$@HH+HCT$H߉4$P04$T$HFLHD$ BIH5%)LFHD$(H?IH5,)LFHD$0HIGHH5HuFNHHtHH+HSH$HR0H$I$C)HI$H1GHwH5H\N*MHHtHnH+HSHD$HR0HD$L`0IH{?DHB@HJH$f.01Hh`l.IH-DHB@HH$ffD0I/@IGT$L4$P0T$4$n.HPHB@HH$f.qH+.I1DHmsuHE4$HP0H+.4$t@Iߺ.Lx5HT$ HLLV<H52T)=WZ :HH%H :H5BDjL DAAH <H81"GY^ HH;%AH5CjL AH :H8H;1F_ AXHH%L @H5CjAH 9:H~;H81FAY AZhLFHLFILFH4A@AWAVAUATUSHHXHndH%(HD$H1HD$ HD$(HD$0HD$8HBHLvLn Hn(H~01EIHLLRFIH&H@HIE‰$H9.Imu IELP0IFH&IFAH9,LH;-%H)H=8)HAIH$HIUH5)HHLHIEHH IEHL=H)H=ѩ)LiAIHHIUH5>)HHLIIEHMIEHAIHHE1HHHhLx CHHlH+u HCHP0Imu IELP0H}u HEHP0H)uH} LmIJC4$MLHLD@HIHMHcH>f.HF0HD$8HC(HD$0HC LHD$(HCHD$ 9IH~SH0Hu!H5ƛ)L=HD$8HIMLt$ Ll$(Hl$0H|$8"HucHXIHfH g5H=51JfD[>HfD@HHH5?Hߒ%H8w;>H$DL=HHH5?H%H8;=HAfDHCHP0fIE HIEHu&IET$L4$P04$T$DHH+HCT$H߉4$P04$T$HFLHD$ 7IH55)L;HD$(H?IH5<)L;HD$0HIuVCHHtHzH+ HSH$HR0H$ IEHIEH1'fHF0HD$8HC(HD$0HC LHD$(HCHD$ .IH~SH0Hu!H5Ɛ)L2HD$8HIMLl$ Ld$(Hl$0H|$8HucHMcIHfH g*H=*1?fD[3HnZfDx\@HHH5N5H߇%H8w03Hf $L2HHH54H%H802HAfDHCHP0fI$HI$cHu&ID$T$L4$P04$T$@HH+HCT$H߉4$P04$T$HFLHD$ ,IH55)L0HD$(H@IH5<)L0HD$0HI1HH53uV8HHtHoH+HSH$HR0H$I$z\HI$H1'1HwH53\]7HHtH~nH+HSHD$HR0HD$LJcIH{DDHB@HKH$f.c1HxJaIH-DHB@HH$ffDcI/@IGT$L4$P0T$4$aHPHB@HH$f.H+aI1DHmuHE4$HP0H+a4$t@IߺaL㾯5HT$ HLL&H5>)MAZ.:HH%H5Y.L ]+jAH $H@&H8121^*_HHK%L +AjH5.H $H8H%10AX%AYHH%H5-L *jAH H$H%H810AZ A[gL0HL0IL0HC+SHHHWHtHGHx-H[t8HxH[.H%H50H8+H봩uyHB`HtZHtlb.H)HHtfHF0HD$8HC(HD$0HC LHD$(HCHD$ t"IH~SHHu!H5v)L&HD$8H}IM@Lt$ Ll$(Hl$0H|$8"HuSHXA/IHfH H=13fD 'HfD@H{%H5:)H8:$&HGH$I~L'IIDs&HIfDHCHP0fIEAHIEHu&IET$ L4$P04$T$ DHH+HCT$ H߉4$P04$T$ HFLHD$ o IH5)L$HD$(H.IH5 )L$HD$0HIIEHIEH#1'L,HHnH H+H$HCHP0L+HHHH+IcHCHP0THy%H52'H82"EDL>4IHtDHB@HYH$ f.1Hh>IHtDHB@HH$f6fD9I/@IGT$ L4$P0T$ 4$HHB@HH$f.H+\I1DHmuHE4$HP0H+4$%IߺL5HT$ HLLH52)=5jHHw%H H5B"jL DAHDH81"%Y^%HH,w%AH5!jL H pH8H1$_AXHHv%L H5!jAH *HH81$AYAZL$HL$I L$HTfDAWAVIAUATUSHH-)H=)H HHHHSH5j)HHHIHHMHH~H/)H=)HP HHHHUH55})HHHIHEHMHEH/ HHH"|)1HLHHEL} "IHI,$"HmI}I~ H5)HWHHIMI~ H5)HWHHHHH5)1H!"HHH+HmHt%HHQ`HihLypHtHHtHEMtIIvIMH>H9HxHxHyHH)H)΁HIND$L$Ht H*WHt Hm7Mt I/HH51x)1L7!I,$IM8L;5It%L;5s%L;5t%LI.ADHCHP0sfHEHP0IELP0HEHP0I}fID$LP0HmHEHP0QHCHP0Hm;fID$LP0HUHR0HJHQ0IGLP0I.DuIFLP0EL5{)H=5)LIHHIT$H5q~)HHLII$HMI$Hu ID$LP0L5={)H=Ƅ)L^IH"HIT$H52y)HHLHHyI,$u ID$LP0IHIE1HLLhHh IIMHIu IGLP0I,$u ID$LP0I>u IFLP0Imu IELP0Hc2IHfHc|$IHhD$%HHyHHH})MHH})HCILs Lc(L{0Hk8fDImu IELP0HH[]A\A]A^A_DHB@HH$EfA3H DH=1 (H5HHH 3H='sfHh5HH I$E1E1A3D$HI$Hu ID$LP0MtI/u IGLP0T$H VD1H=e['MDHB@H9H$8fD$E1A3HHu1HCHIP0wHB@H%H$Uf.D$E1A3HEHu HEHP0I$HI$E1D$A3Hf.A\4KHEE1D$A3MHfLAm43IH WI7HB@HMH$BfI,$A3ID$LP0HHD$HI$A3HI$uf.L83IHILD$Ar4HPAX43HB@HH$)f.D$Ao4}DILE1D$At4H)HB@HBH$8f.I/5HmID$Aw4$DLHE1D$A4MA4HDI,$MD$A4I$MD$A4HfHEMD$A4H3H*IH w41H=#^HI1HLILHLD$Aw4f41MH O H=cY#%A3f.SHHHWHtHGHx-H[t8HxH[H9k%H5H8H봩uyHB`HtZHtlHHHtHT$xD$wD$$H$H$H|$x D$wHD$xHDŽ$HDŽ$xD$wkD$w^D$wQHItHHD$0kE11dAWAVAUATUHSH8H;5Y%L=a)H|$H=ek)HT$LD$HLIH HIVH5c)HH LIIHM IHC!IH HHXhIH,HX%H5>c)H6> LLL0HHW I/ZI.0ImH;L=`)H=]j)LIHu HIUH5Zc)HHZ LIIEHM) IEH*IHb HD$1LLHIEHEIm HI](SIH I/ImI<$ID$HH5^)H LIMQ HSH5^)HH HIM LֺLLT$LT$HI ImuIELT$LP0LT$I*u IBLP0L;=V%L;=lU%L;=bV%L ŅI/u IGLP0 H|$HkH5b)HWHH IM H|$H5b)HWHH IM H5#h)1LLT$LT$HIM I*u IBLP0I.u IFLP0H$U%HHphLx`H@pHt$HD$MtIHD$HtHHD$HtH IHD$ ID$HlHH\$(LLt$I$8LH0I$0H0H01HAD$ID$ +wDH(H0H0H@(A;t$}NHcI H0H@H0Pt8H(HR8HcR H0A;t$|HH99H\$(H|$ jMt I/QHt$HtHHD$HH#Ht$HtHHD$HHH5X)1LImHu IELP0H H;-S%H;-R%u H;-S%HmDH;IufHCHP0MtI,$u ID$LP0H8L[]A\A]A^A_DIFLP0fL8IHHIVH5^)HHLIIHMIHIoIHHD$1LLLT$HIBHEIj LT$HIuI/uIGLT$LP0LT$I*u IBLP0I<$u ID$LP0H'[)H=d)HHIH~HIVH5\)HHLIIHMIHu IFLP0IT$H5Y)HH[LHH5LIHpHXIHwHQ%H5m\)HeiLLL_HHImI/I.iH;HCHP0HCHP0fIELP0H;f.IFLP0ImfIGLP0I.f.IELP0IFLP0IELP0I<$ID$D$@IGLP0ImfLP0ID$ID$"E1HIHIFL1P0MfDMt I*MtI/u IGLP0T$H 3E1H=8H9H+A)f.u;HP0H;0HHP0H0H0H0LcJ LLLHHW I/ZI.0ImH;L=dO)H=X)LIHu HIUH5Q)HHZ LIIEHM) IEHIHb HD$1LLHIEHEIm HI](IH I/ImI<$ID$HH5TM)H LIMQ HSH5/M)HH HIM LֺLLT$YLT$HI ImuIELT$LP0LT$I*u IBLP0L;=6E%L;=C%L;=D%LŅI/u IGLP0 H|$HkH5BQ)HWHH IM H|$H5Q)HWHH IM H5V)1LLT$DLT$HIM I*u IBLP0I.u IFLP0HC%HHphLx`H@pHt$HD$MtIHD$HtHHD$HtHIHD$ ID$HlHH\$(LLt$I$8LH0I$0H0 "1HAD$ID$ *v@H(H0H0H@(A;t$}NHcI H0H@H0Pt8H(HR8HcR H0A;t$|HH99H\$(H|$ Mt I/QHt$HtHHD$HH#Ht$HtHHD$HHH5F)1LlImHu IELP0H H;-xB%H;->A%u H;-8B%HmDH;IufHCHP0MtI,$u ID$LP0H8L[]A\A]A^A_DIFLP0fLIHHIVH5-M)HHLIIHMIHIIHHD$1LLLT$HIBHEIj +LT$HIuI/uIGLT$LP0LT$I*u IBLP0I<$u ID$LP0HI)H=@S)HIH~HIVH5K)HHLIIHMIHu IFLP0IT$H5H)HH[LHH5IHpHX'IHwHL@%H5J)HiLLLHHImI/I.iH;HCHP0HCHP0fIELP0H;f.IFLP0ImfIGLP0I.f.IELP0IFLP0IELP0I<$ID$D$@IGLP0ImfLP0ID$ID$D&E1HIHIFL1P0MfDMt I*MtI/u IGLP0T$H E1H=/H9H+A)f.u;HP0H;0HHP0H0H0H0LcJ)H=>i*uIMq)MD$E1HL0IL ILI)LHLI@H|$I HI&LIH|$I M1H >AH=;H+PHGP02@A D$`aDIELE1D$`A HfMD$t`A f.IELD$`MA HkIED$`A HDA D$`DHD$`A WfA D$`DH5(LHHD$IH1D$`A A D$`!H>IN `EH ӎ @`E1H=ХrA D$`LILЛIIHICMkf.AWAVIAUATIUSH8H^dH%(HD$(1H$HD$HD$HHDHHF H$MvH( H(hE111AHLHH H;H@u HP0HCHH5(HHHHH5i(H IHHmu HEHP0L;-$L;-$u L;-$zDImu IELP0E\LDf.4D$L5Y(H=(LzIH.HIUH5(HHLHIEHHfIEHu IELP0D$IH|蒖IHLh1HH՘IH Hmu HEHP0I.u IFLP0L;-$L;-$u L;-$Imu IELP0Ml$ D$H$H5$IEI|$LHIEH% HIE-DH+HCHP0}I^HHH HOHDL LOL@HHL$SH,H5 H81XYZH 5 H=1HL$(dH3 %(H" H8[]A\A]A^A_@HY$H$L5(H=(L:HHHHMH5(HHHIHEHHEMHu HEHP0L5(H=5(L͓IHyHIWH52(HH*LHH1I/u IGLP0IHH1HHHXFIHHmu HEHP0I.u IFLP0诓HHLx1HLIIEMHIEHmL;=$L;=$u L;=$I/M|$ H$HH5$II|$MGHHoI/9IGLP0*fLADžwIEA E11D$YHIEHIELIP0IH;HHH舍H5(LIƑIHD$HMHD$Lt$H$D$YA ft$H χD1H=Ԟ7H@@HbH$HHf.D$YA HmAu HEHP0MtImu IELP0MlI/bIGLP0SIELP0HEHP0IGLP0LHŅIEA E11D$ZHLfDLA jD$FZHHLH YIHH uH=i1}IELP0L蘑Ņ-A D$bZ2轐H$A D$Y!H5(H=(1{HHHHmlHEHA P0D$ZLPIHwIE1D$KZA HHF HHD$HFHD$覊HBHT$HLLCH5(YDHFHHD$WIH5(H=(1sHHHHm HEHA P0D$qZHE1ID$HZA fDHA@HH$fH5q(LHHD$IGf.E1D$ZA f.HB@H*H$Kf.A D$Z[DHB@HH$fIELE1D$MZA HIELE1D$ZA HHHHGP0@A D$ZmDIELE1D$PZA Hf.MD$ ZA f.IELD$UZMA HcIED$YZA H;DA D$qZDHD$^ZA D$HZA HE1D$5ZA A D$ZH聏H Zf.H  Y1H= A D$mZ H!IrLH"LH脉IAff.AWAVIAUATIUSH8H^dH%(HD$(1H$HD$HD$HHDHHF H$MvH?( H(hE111AHLHH H;H@u HP0HCHH5(HHHHH5(HLIHHmu HEHP0L;-H$L;-$u L;-$zDImu IELP0E\L脋f.tD$L5(H="(L躉IH.HIUH5(HHLHIEHHfIEHu IELP0D$(IH|҉IHLh1HHIH Hmu HEHP0I.u IFLP0L;-$L;-$u L;-$Imu IELP0Ml$ D$H$H5$IEI|$L;HIEH% HIE-DH+HCHP0}I^HH~H ~HOHL }LOL@HH$SHH5MH81CXXZH ?~ H=G1BHL$(dH3 %(H" H8[]A\A]A^A_@H$H$L5Y(H=(LzHHHHMH5?(HHHIHEHHEMHu HEHP0L5(H=u(L IHyHIWH5r(HH*LHH1I/u IGLP0GIHH1HHHX膉IHHmu HEHP0I.u IFLP0HHLx1HL2IIEMHIEHmL;=2$L;=$u L;=$I/M|$ H$HH5$II|$MHHoI/9IGLP0*fL8ADžwIEA) E11D$XHIEHIELIP0IH;HHHȀH5(LIIHD$HMHD$Lt$H$D$XA) ft$H {D1H=~7H@@HbH$HHf.D$XA) HmAu HEHP0MtImu IELP0MlI/bIGLP0SIELP0HEHP0IGLP0L舅ŅIEA+ E11D$XHLfDLA0 語D$ YHHL舞+ XIHH yH=|1轐IELP0L؄Ņ-A0 D$D@AD$JDIEI1D$dJAH~HB@H H$f.IELE1D$JAHHH>HGP02@AD$5JaDIELE1D$gJAHfMD$"JAf.IELD$lJMAHkIED$pJAHDAD$JDHD$uJAWfAD$_JDH5(LFHHD$IH1D$LJAAD$J!HNJIN1JEH <IE1H=mJSrAD$JLIILIIIHIISDMkf.AWAVIAUATUHSHXdH%(HD$H1HFH;e$HD$0HD$8HD$@H;Ś$H@hH2H@H%1HHH\$0HH5>(HHD$0`CIHD$0H H;h$L;-.$uGL;-($t>LFAą;Ll$0(@H~H^H{DImu H|$0HGP0HD$0EHUHBhHH@ HHILl$0M IEL%$L9 IUH IEIU HD$8HT$@HHD$@HHT$0H*=HD$0Ll$@IMH IEHcЉD$(H9  HT$@H*HLl$8HD$@HD$8FEH HHUHBhHH@ HHHHl$0HHEL9 HUH HEHU HD$@HT$8HHD$8HHT$0H*u H|$0HGP0HD$0HD$8Hl$@HD$8HD$@HD$H$HLP`LXhH@pHD$ MtIMtIHD$ HtHH'(L\$LT$L(hE1ɹAAHLALT$L\$HIHD$0 HD$8HHT$0H*u H|$0L\$LT$HGP0L\$LT$HD$0Ld$8HD$8MtI*uIBL\$LP0L\$MtI+u ICLP0Ht$ HtHHD$HHu HFHP0ID$ H8pI~ H5'(HWHH IM I~ H5(HWHHHD$@H H5(1H-DHD$0H HT$@H*u H|$@HGP0HD$@HT$0H*u H|$0HGP0HD$0H$HLP`L@hLHpMtIMtIMtIIt$INHHyHHHxHxH)H)΁HIFt$(HEHHEHcȉH9iIFH5E$HD$H9pH|$LL$ LD$LT$ALL$ LD$LT$f.P IFMt I*wMt I(Mt I)IH5z(1LBI/IML;5$L;5q$vL;5g$iLAI.Au IFLP0E L56$IDH~HFHHDH|$@HGP0H|$0HGP0D$5D$E1E11E1HD$E1HT$0HtH*u H|$0HGP0HT$8HtH*u H|$8HGP0HT$@HtH*u H|$@HGP0MtI/u IGLP0MtI.u IFLP0T$t$E1H 4H=8KMtI,$u ID$LP0HtH+u HCHP0MtImu IELP0HtHmu HEHP0HL$HtHHD$HHu HAHP0H\$HdH3%(LHX[]A\A]A^A_f.1)1D$5D$ fHT$@HtCH* HT$0HD$@Ht&H*u H|$0L\$LT$HGP0L\$LT$HD$0HT$8Ht&H*u H|$8L\$LT$HGP0L\$LT$H=;(L\$LT$HD$87LT$L\$ H l.5H=1lEHT$@Ht$0H|$8@LT$L\$ H?(L(hE1ɹAAHLALT$L\$HI~ H8uH@LP0L\$LT$HT$8H*u H|$8L\$LT$HGP0L\$LT$HD$8HT$0H*u H|$0L\$LT$HGP0L\$LT$HD$0HT$@H*u H|$@L\$LT$HGP0L\$LT$HT$ LLHD$@=HD$011D$4D$ fDH;${H#9IH HT$0H*u H|$0HGP0HD$0IGLHHD$@H. LHD$8Ht LվHYt I/IGLP0IUHIUHHRHD$8HT$@w1D$5D$fHH#HH2H N+HEH؊$H59H818D$5D$:f.H$HR1E1H54H81o8D$5HD$0D$4HB@HH$_f.E1D$:6D$D$6E1E1D$DD$5D$D$<6I/uJIGLE1E1P0D$DH$H5e4H817fDD$E1E1dDD$>6fDE1D$)6D$7LL$(LD$ LT$D$4D$LT$HLD$ LL$(D$m6A!HD$8Ht0H(u*H|$8LL$(LD$ HGLT$P0LL$(LD$ LT$HD$8HD$@Ht0H(u*H|$@LL$(LD$ HGLT$P0LL$(LD$ LT$HD$@HD$0Ht0H(u*H|$0LL$(LD$ HGLT$P0LL$(LD$ LT$t$DH 0)H=,LL$(LD$ LT$HD$0"@HT$8Ht$@H|$0^;LT$LD$ LL$(LL$ LD$LT$2LT$LD$HILL$ oHD$01LLHHD$0IFHD$@HHD$@IF HD$8HHD$8IF(5I/LT$HLD$LL$ u2HD$IGLLL$(LD$ LT$P0LL$(LD$ LT$HL$HkH; և$H; $H; $HLL$(LD$ LT$HL$(3HL$LT$ALD$ LL$(H)u(HQLL$ HLD$LT$R0LL$ LD$LT$EEI.u(IFLL$ LLD$LT$P0LL$ LD$LT$HT$0H*u*H|$0LL$ LD$HGLT$P0LL$ LD$LT$HD$0HT$@H*u*H|$@LL$ LD$HGLT$P0LL$ LD$LT$HD$@HT$8H*u*H|$8LL$ LD$HGLT$P0LL$ LD$LT$LLLHD$86fD$*51D$L1IE1HD$E1E1@HH$H54LL$ LD$H8LT$).LT$LD$LL$ LL$ LD$LT$0LT$LD$HLL$  ,@LL$ HLD$LT$+^0LT$LD$LL$ H|$@L\$LT$HGP0HT$0L\$LT$YHUHbHUHHRHD$@HT$8Ha$HRH5.1H812D$5HD$0D$E1D$6D$H$H5.H811D$5LD$5ID$AD$5D$HT$ LLE1E14kHA`HHdL/H*IM~IMHHRIEImIUHD$LR0HD$.H0AD$S5D$H5E11E1D$E1HD$D$5D$E11E1D$@5HD$E1D$TD$5D$1I/u IGLP07u1HH-*HH "H50HEH$H81/D$P5D$5E11E1D$HD$ 0I`-HHЁ$H5!H8*/IEZ3LT$LD$HLL$ aHLL$(LD$ LT$HD$jHT$LT$LD$ LL$(H*rHJHD$(HLL$ LD$LT$Q0HD$(LL$ LD$LT$;H'L)H !ID$c6A E11D$5E1HD$D$LL$ LD$LT$(,LT$LD$HLL$ 2a1I/u IGLP05u1HH@(HH H5.HEH1$H81.D$5[H)Ds=D$6E1LLLE1<1D$(Lg+D$6D$6HT$8Ht$@LL$(H|$0LD$ LT$K0LT$LD$ HD$0HD$@LL$(HD$8D$6WD$6JHP$LAH5m(HH81-ImmIELP0^YG@AWAVAUATMUSHHH;p$L-A(H|$ H=ő(Ht$(HL$LL$LHE)HHI HHUH5(HH HHD$HEHH|$ HEHu)HH HHX*IHH(H=(H(IH HIVH5'(HH; LIM I.H5=(LL2+ I/pH|$LH +HH! Ht$HHD$HHJHmImdH;JH-(H=<(H'IH HIUH59(HH LIIEHM IEHC (IH HD$1LLHIEI$Me HI](2*IH I/u IGLP0Imu IELP0I<$ID$u LP0ID$HH5(HU LIM/ HSH5k(HH HIM LL$IH?Imu IELP0I.u IFLP0L;=|$L;=L{$u L;=F|$ I/u IGLP0 H|$HkH5(HWHH IM H|$H5(HWHH[ IM H5(1L(IH I/u IGLP0Imu IELP0H {$HHphLh`H@pHt$HD$MtIEHD$HtHHD$HtH(HD$ID$L|HLl$0IHl$ H\$8H\$(DI$8HH0I$0H0 1AEAD$ID$ *v@H(H0H0H@(A9t$~NHcI H0H@H0Pt8VH(HR8HcR H0A9t$IM99Ll$0H\$8H|$U Mt ImHL$HtHHD$HHSHL$HtHHD$HH%H5~(1L&I.Hu IFLP0H H;-y$H;-x$u H;-y$qHmDtH;H#0@HEHP0rLX#HH!HHUH5(HHPHIHEHMMHEH#IHHD$1LLHIGI$Mg %IHI.u IFLP0I/u IGLP0I<$u ID$LP0HY(H=(Hz"HH@HHUH5/(HH HIHEHM HEHu HEHP0IT$H5(HH LHH |"IH Hh#HH H(H=(H!IHHIWH52(HH LHD$H|$ I/HT$H5>(H6$ H\$HHD$HHHLL$HH I.ImHmH;HCHP0IFLP0mIGLP0HFHP0Hm9fHCHP0IELP0H;f.HEHP0ImgfHEHP0:IELP0HED$E1E1D$HHE1H E1E1HEHP0MtIEHIEHu IELP0MtI.u IFLP0MtI/u IGLP0H|$t Ht$HHD$HHu HFHP0T$t$H H=v,HtH+`1HCHHP0MtI,$u ID$LP0HHH[]A\A]A^A_Ãu;HP0H;0HHP0H0H0H0:*LcJD$D$ HD$DHCHP0HEHP0HIELP0.IFLP0HHmAu HEHP0EyD$D$hIME1LD$ZE1M1HD$HD$,IED$E1D$ HHD$HEE1E11D$HD$HED$E11D$HHB@H$H$H66HHD$k1D$HEE1E1E1D$HD$UHB@HH$HD$E1D$OD$HB@HH$E1D$E1D$ D$E1D$ IMD$R1E1D$E1HH5u(H=((1HHDHmMHmHEHP0D$D$ aH4IH*HED$y1HD$HD$D$D$ H@@HH$LID$ D$HB@HoH$H|$;HB@HH$HD$D$mD$IEE1D$D$ HWHB@HGH$1E1D$pD$HD$D$ I.u IFLP0D$HD$fHB@HH$H|$HB@HH$HILHD$E1D$HD$ HED$rHD$HD$D$ BIEE11D$wD$H6HEE11D$~D$H%HED${1D$HHB@HH$D$D$ HEE1HD$D$HD$D$D$HHD$LIHILIBH|$yID$D$ :LTHLDIH4IH$I5H|$ILHD$ME1xAWAVAUATUSHXL5q(H^H|$dH%(HD$H1Hoq(Lt$0HD$HD$8Hk$HD$@HH~/HMH[HF(HD$HF HD$LvHk$HD$H+H}( H(hE111AHLHHeH;Jk$ H}( H(hE111AHH|$HHH;k$C HSH5r(HH HIM HUH5lr(HH HIM LLIHH;j$L;ni$AA L;ej$@AtRI(H5|(L<IH@ H;Ij$L;i$AA L;j$A I,$uID$T$(LLD$ P0T$(LD$ I/uIGT$(LLD$ P0T$(LD$ E9I(L-pr(H={(LIH HIT$H5Uu(HHm LII$HM< I$Hu ID$LP0L-r(H={(L"IH HIT$H5p(HH LII$HM] I$Hu ID$LP0OIH HE1HLHhIH Imu IELP0I,$u ID$LP0IH Lp1HL7IH I/I,$L;5?h$L;5g$u L;5g$DI.sE HD$HT$IHH5f$L` I$HxM*II$MHI$u ID$LP0H+LeHqg$HD$HHIH H} HIHHf$I?SIH5H8L A1jX^ZH f H= 1iHL$HdH3 %(H HX[]A\A]A^A_Lhf.X!D$(4H|$Jf.:!D$>L-_o(H=x(LIHHIPH5m(HHuLLD$ LD$ IIHIMpHu I@LP0D$IHjHD$ LD$ HIL@1HLIHI/uHD$ IGLP0LD$ I,$uID$LD$ LP0LD$ L;e$L;vd$u L;pe$DI(u I@LP0EHD$L$D$(HT$L@ H5d$IHxLLD$+LD$HIIHIeI@LP0VI@T$ LP0T$ 'fI@LP0aI$D$U A_HI$HI/uIGLD$LP0LD$Mt(I(u"E1I@LP0MtI.u IFLP0T$H DH=NHuDH%HmHEHP0 @S _H IH=SH+uE1HCHLP01@Hc$HD$LljT$(LD$ GT$(LD$ +fLLD$ #LD$ D$U A_HHHtHHF(HD$@HF HHD$8HFHD$0IHHM~*H5_j(H HeHD$@IMSHD$8Lt$0HD$HD$@HD$fDH/H?IM~H5k(Hx HtHD$0IM~H5i(HV H_HD$8ILH-Qt(HHxH9HCHCHMIE1H5 A^1HPHca$H81)HD$R 1HL-s(MHxI9LHEIMH5T HPH`$H81HEIA _E1D$S 1HeHB@HmH$JfU _+HB@HUH$Nf.I$D$U A_HI$H0ID$LP0MWf.ID$LD$LP0LD$fDIGLP0`ID$LP0ZIFLP0~LLD$  LD$ AI(X N_Df.L Aą I.eA_D$] HI$cMA_D$_ @H>f.L$] _IHDL$X >_IHDH5)a(H=bq(1K IHHHL-o](H=f(LIHHIPH5[(HHuLLD$ LD$ IIHIMpHu I@LP0D$IHjHD$ LD$ HIL@1HLIHI/uHD$ IGLP0LD$ I,$uID$LD$ LP0LD$ L;S$L;R$u L;S$DI(u I@LP0EHD$L$D$(HT$L@ H5(R$IHxLLD$;LD$HIIHIeI@LP0VI@T$ LP0T$ 'fI@LP0aI$D$ A]HI$HI/uIGLD$LP0LD$Mt(I(u"E1I@LP0MtI.u IFLP0T$H DH={ HuDH%HmHEHP0 @ ]H YH=2c H+uE1HCHLP01@HQ$HD$LljT$(LD$ WT$(LD$ +fLLD$ 3LD$ D$ A]HHHtHHF(HD$@HF HHD$8HFHD$0IHHM~*H5oX(HHeHD$@IMSHD$8Lt$0HD$HD$@HD$fDH/HOIM~H5 Z(HHtHD$0IM~H5.X(HfH_HD$8ILH-ab(HHxH9HSHCHMIE1H5A]1HPHsO$H819HD$ 1HL-a(MHxI9LHEIMH5dHPH O$H81HEIA]E1D$ 1HeHB@HmH$Jf ]+HB@HUH$Nf.I$D$ A]HI$H0ID$LP0MWf.ID$LD$LP0LD$fDIGLP0`ID$LP0ZIFLP0~LLD$ #LD$ AI( ]Df.LAą I.eAO^D$ HI$cMAu^D$ @H>f.L 3^IHDL ]IHDH5IO(H=r_(1[IHH*I,$ID$LP0 ^,fL8IHI/ 8^I$A]D$ H;DH5N(H=^(1IH>H*I,$ID$LP0 ^^fH ]gD]H ]?DHFHHD$0IA5^D$ DHB@HH$}fHB@HH$uf.H ]I/D$ A]A:^D$ DHB@H#H$\fD$ A]D ^3fMD$ MA=^zI$A]D$ HKDI$MD$ MAB^H%I/D$ AF^E ^^I$AK^D$ HHT$0HHLH5(s].HI "^/HH$H5IE1A]H81aHD$ 1HHH$H5H813_HvIHfIH  O^H=H+1b ^{ Z^lL ILLD$ LD$ ILI:cE1MD$ A8^MD$ AF^H W ]H=&WE1D$ A]W ]M2D$ A]E1*H  u^H=D$ A"^f.AWAVAUATUSHXL5M(H^H|$dH%(HD$H1HM(Lt$0HD$HD$8H H$HD$@HH~/HMH[HF(HD$HF HD$LvHG$HD$H+HZ( H(hE111AHLHHeH;jG$ HY( H(hE111AHH|$HHH;!G$C HSH5N(HH HIM HUH5N(HH HIM LLIHH;F$L;E$AA L;F$@AtRI(H5X(L\IH@ H;iF$L;/E$AA L;&F$A I,$uID$T$(LLD$ P0T$(LD$ I/uIGT$(LLD$ P0T$(LD$ E9I(L-N(H=X(LIH HIT$H5uQ(HHm LII$HM< I$Hu ID$LP0L-!N(H=W(LBIH HIT$H5L(HH LII$HM] I$Hu ID$LP0oIH HE1HLHhIH Imu IELP0I,$u ID$LP0IH Lp1HLWIH I/I,$L;5_D$L;5%C$u L;5D$DI.sE HD$HT$IHH5C$L` I$HxMJII$MHI$u ID$LP0H+LeHC$HD$HH;IH (HHIHHB$I?SIH5H8L A1X2\ZH  H=v1HL$HdH3 %(H HX[]A\A]A^A_Lf.xD$(4H|$jf.ZD$>L-K(H=U(LIHHIPH5J(HHuLLD$ LD$ IIHIMpHu I@LP0D$IHjHD$ LD$ HIL@1HLIHI/uHD$ IGLP0LD$ I,$uID$LD$ LP0LD$ L;A$L;@$u L;A$DI(u I@LP0EHD$L$D$(HT$L@ H5@$IHxLLD$KqLD$HIIHIeI@LP0VI@T$ LP0T$ 'fI@LP0aI$D$| At\HI$HI/uIGLD$LP0LD$Mt(I(u"E1I@LP0MtI.u IFLP0T$H DH=HuDH%HmHEHP0 @z c\H iH=^sH+uE1HCHLP01@H?$HD$LljT$(LD$ gT$(LD$ +fLLD$ CLD$ D$| A{\HHHtHHF(HD$@HF HHD$8HFHD$0IHHM~*H5F(HHeHD$@IMSHD$8Lt$0HD$HD$@HD$fDH/H_IM~H50H(HHtHD$0IM~H5>F(HvH_HD$8ILH-qP(HHxH9HcHCHMIE1H5AX\1HPH=$H81IHD$y 1HL-O(MHxI9LHEIMH5tHPH=$H81HEIAe\E1D$z 1HeHB@HmH$Jf| p\+HB@HUH$Nf.I$D$| Ar\HI$H0ID$LP0MWf.ID$LD$LP0LD$fDIGLP0`ID$LP0ZIFLP0~LLD$ 3LD$ AI( \Df.LAą I.eA\D$ HI$cMA#]D$ @H>f.L \IHDL \IHDH5i=(H=M(1kIHHI,$ID$LP0 \,fLHIHI/ \I$Aw\D$| H;DH5<(H=L(1IH>H'I,$ID$LP0 ]fH} \gDmH~ \?DHFHHD$0IA\D$ DHB@HH$}fHB@HH$uf.H \I/D$ A\A\D$ DHB@H#H$\fD$ A\D \3fMD$ MA\zI$A\D$ HKDI$MD$ MA\H%I/D$ A\E ]I$A\D$ HHT$0HHLH5'!\.HI \/H7$H5 IE1AX\H81qHD$y 1HH6$H5H81C_HIHvIH ! \H= !H+1b \{ ]lLILLD$ LD$ ILI:sE1MD$ A\MD$ A\H gy V\H=RgE1D$ A\W \M2D$ A\E1*H  #]H=D$ A\f.AWAVAUATUSHXL5;(H^H|$dH%(HD$H1H;(Lt$0HD$HD$8H6$HD$@HH~/HMH[HF(HD$HF HD$LvH5$HD$H+H,H( H(hE111AHLHHeH;z5$ HG( H(hE111AHH|$HHH;15$C HSH5<(HH HIM HUH5<(HH HIM LLIHH;4$L;3$AA L;4$@AtRI(H5F(LlIH@ H;y4$L;?3$AA L;64$A I,$uID$T$(LLD$ P0T$(LD$ I/uIGT$(LLD$ P0T$(LD$ E9I(L-<(H=)F(LIH HIT$H5?(HHm LII$HM< I$Hu ID$LP0L-1<(H=E(LRIH HIT$H5:(HH LII$HM] I$Hu ID$LP0IH HE1HLHhIH Imu IELP0I,$u ID$LP0$IH Lp1HLgIH I/I,$L;5o2$L;551$u L;5/2$DI.sE HD$HT$IHH51$L` I$HxMZII$MHI$u ID$LP0H+LeH1$HD$HHKIH 8HHIHH0$I?SIH5H8L A1XZZH  H=1HL$HdH3 %(H HX[]A\A]A^A_Lf.D$(4H|$zf.jD$>L-9(H=C(LIHHIPH58(HHuLLD$ LD$ IIHIMpHu I@LP0D$IHjHD$ LD$ HIL@1HLIHI/uHD$ IGLP0LD$ I,$uID$LD$ LP0LD$ L;/$L;.$u L;/$DI(u I@LP0EHD$L$D$(HT$L@ H58/$IHxLLD$[_LD$HIIHIeI@LP0VI@T$ LP0T$ 'fI@LP0aI$D$ A"[HI$HI/uIGLD$LP0LD$Mt(I(u"E1I@LP0MtI.u IFLP0T$H DH=HuDH%HmHEHP0 @ [H yH=H+uE1HCHLP01@H-$HD$LljT$(LD$ wT$(LD$ +fLLD$ SLD$ D$ A)[HHHtHHF(HD$@HF HHD$8HFHD$0IHHM~*H54(HHeHD$@IMSHD$8Lt$0HD$HD$@HD$fDH/HoIM~H5@6(HHtHD$0IM~H5N4(HH_HD$8ILH->(HHxH9HsHCHMIE1H5A[1HPH+$H81YHD$ 1HL- >(MHxI9LHEIMH5HPH)+$H81HEIA[E1D$ 1HeHB@HmH$Jf [+HB@HUH$Nf.I$D$ A [HI$H0ID$LP0MWf.ID$LD$LP0LD$fDIGLP0`ID$LP0ZIFLP0~LLD$ CLD$ AI( X[Df.LAą I.eA[D$ HI$cMA[D$ @H>f.L [IHDL H[IHDH5+(H=;(1{IHHI,$ID$LP0 g[,fLXIHI/ [I$A%[D$ H;DH5*(H=:(1IH>H7I,$ID$LP0 [fH 4[gD}H >[?DHFHHD$0IA[D$ DHB@HH$}fHB@HH$uf.H J[I/D$ AM[A[D$ DHB@H#H$\fD$ AO[D g[3fMD$ MA[zI$AT[D$ HKDI$MD$ MA[H%I/D$ A[E [I$A[D$ HHT$0HHLH5'Z.HI ~[/H%$H5IE1A[H81HD$ 1HH$$H5H81S_HIHIH 1 [H=61H+1b c[{ [lL*ILLD$ LD$ ILI:E1MD$ A[MD$ A[H w [H=|wE1D$ AJ[W M[M2D$ AX[E1*H  [H=D$ A~[f.AWAVAUATUHSHXH^H|$dH%(HD$H1HC$$HD$0HD$8HD$@HHH/HF(HD$ HE HD$HEHD$He6( H(hE111AHH|$HH H8u H@HP0H6( H(hE111AHH|$HHH8u H@HP0HUH5*(HHHIM HSH5*(HHHIM\LLIHH; #$L;-!$AA L;-"$@AtYImu IELP0H54(LIHH;"$L;-i!$AA L;-`"$A I.I/E(ImL%*(H=4(LIHHIWH5-(HH LIIHIMHu IGLP0L%*(H=4(LIHUHIWH56+(HHLIIHMIHu IGLP0f#HHHD$HT$HIHHLHP 1HXIHI.I/tIHL`1HLIH" ImI/L;% $L;%$L;%{ $L%AŅSI,$u ID$LP0EHD$HT$ IHH5$L` I$HxM菠II$MHI$ ID$LP0H]DHHH HMHSH^L@H5$H5L H81X@VZH  H=E1HL$HdH3 %(LHX[]A\A]A^A_DHA$HD$ 1IGT$,LP0T$,EL…D$K AVImE1IELP0M|I/rIGLP0cIFT$,LP0I/T$,VgIET$,LP0T$,LH|$f.f(zH|$T$f.T$f(ff/\HD$HT$ f(H5$Lh IEHxLNIH"Imu IELP0HmuHEHP0HLH+BHCHP03fDLT$,LT$,IHc}HtHHF(HD$@HE LHD$8HEHD$0IHtvHHtFM`HD$0HD$HD$8HD$HD$@HD$ fDHHIH5&(LIHD$0HH5&(LHD$8HRIMxH5$(LHHD$@IID$I AsVf.T$DH H=AHmeVHB@Ht`H$fDIGLP0fIFLP0IGLP0;IELP0!D]H_IvD$K 1AVI.IFHT$LMP0HT$I@MImpHB@HH$%fD$K AVI.u IFLP0I/t4E1I$D$T MAWHIHE1IGLE1P0^fDH5(H=,(1IHHI,$tID$LAVP0D$P fDLAVzD$T IHELAVRD$T IHfHFHHD$0迿I<AVD$K DD$T$HfD$L AVUDpHD$M AV)fH5(H=r+(1[IH[HI,$pID$LAWP0D$U fDD$P AVDH;D$T AV @HB@HH$f.D$Q AVNDAVID$T HfHB@HH$f.MAVD$T f.IAVD$T f.H H dVE1H=LAVMD$T RI$MAVH*D$U AWiHT$0HLLUH5`'z/VD$T AVHIaMHA)WD$V ^HH$H H5jL AH˻H81sY^&VD$P AVD$U AWLILyISAVD$T YMI6H K VE1H=HEHHEAWAVAUATUSHXH^H|$ dH%(HD$H1H(HD$HD$0H(HD$HD$8H$HD$@H6H~2HHHF(HD$HF HD$HFHD$H$HD$HH$(( H(hE111AHH|$HH H8UH'( H(hE111AHH|$HHH8HUH5(HHHIMHSH5(HHHIMLLǼIHH;$L;=$AA L;=$@ArtRI/<H5&(LhIHT H;u$L;=;$AA L;=2$A I.uIFT$(LP0T$(ImuIET$(LP0T$(EI/uIGT$(LP0T$(H|$pf.`D$(H|$Rf.BD$ L%g(H=%(L舽IHHIWH5(HHe LIIHM5 IHu IGLP0D$IH< 袽IHn Lx1HLIH Imu IELP0I.u IFLP0L;=$L;=$u L;=$DI/u IGLP0EHD$ L$D$(HT$Lx H5$IHxLaBIIM HIHmDH@HP0H@HP0H$HD$ L%(H=:$(LһIH&HIVH5(HHwLIIHMGIHu IFLP0L%F(H=#(LgIHHIVH5(HHtLIIHMtIHu IFLP0蘻IHH1HLHX׽IHImu IELP0I.u IFLP0@IHL`1HL能IHI/I.sL;-$L;-R$u L;-L$DIm_ENHD$ HT$IHH5;$Lh IEHxMvIHImIELP0HHIH HHIHH6$I?SIH5H8L A1XFZH ޯ H=E1HL$HdH3 %(L0HX[]A\A]A^A_f.IGLP0ID$jA.GHIHImu IELP0Mt2IE1HIHu IGLP0MtImu IELP0T$DH H=RE1HEHHEuHEHP0HH+HCHP0I.AGD$rZIFLP0M6BfH!$HD$CLT$(輹T$(yL訹…D$jA5GHHcHtHHF(HD$@HF HHD$8HFHD$0BIHHM~*H5(HgH}HD$@IMkHD$0HD$HD$8HD$HD$@HD$nfH7H迲IM~H5(HHtHD$0IM~H5(HֶHWHD$8IDhGH H=GAHmDD$jA*GDHB@HH$>fIE1D$jA,GHIH5E1@HB@HH$"f.IFLP0~IGLP0dIELP0LxAąID$mAdGE1HLAGD$rIHfIGLP0,LAąD$rAGif.n%H`k@G_D$tAG)f.HfH 3g GE1H=l0KLmTGIHDH5 (H=(1kIHHI,$ID$LP0nsGfLHIHIE1D$rAGH'IA1GD$jHfDH5 (H=(1öIH_HI,$ID$LP0sGf.腴HlJGDHFHHD$0IeAGD$rDHB@HH$sf.D$mAVGDHB@HH$fD$mAYGDHB@HH$vfAGD$reDD$mA[GImyf.nsGD$rAGIA`GD$mHfDIAGD$rHfDIMD$rAGH sG3HT$0HHLH5ػ'oF&HE1D$oAGH/I{HInoGsGLILILѴIT@AWAVAUATUSHXL- (H^H|$dH%(HD$H1H (Ll$0HD$HD$8H$HD$@HK H~/HmHHF(HD$HF HD$LnHy$HD$HH( H(hE111AHLHH H8H( H(hE111AHH|$HH H8HSH5~ (HH HIM HUH5R (HH LD$ HLD$ IMGLǺLLD$ rLD$ HIaH;z$L;=@$AA L;=7$@A`t\I/H5k(LLD$ LD$ HI H;$L;=$AA L;=$A I(uI@T$ LP0T$ I.uIFT$ LP0T$ EI/uIGT$ LP0T$ OLf.f( H|$T$ f.ݾT$ i f(;\f(fTݾf.sHD$HT$f(H5$Lx IHxL3IHj I/IGLE1E1P0H+QLHmu HEHP0MtI,$u ID$LP0M6I/,IGLP0fDH@HP0"H@HP0XH1$HD$L% (H=z(LIHHIVH5' (HH LIIHM IHuIFLL$LP0LL$LL$4LL$HI HE1LHHhHHX eLL$HI I)u IALP0I.u IFLP0H(IL0IH H8u H@LP0L- (H=f(LIHjHIVH5 (HH LIIHM IH_L-x (H=(LD$L蔫LD$HIHIVH5d (HH LD$LLD$IM I.LL$ LD$軫LD$LL$ HI I$1LHL`LD$ LL$LL$LD$ HI I)Im LD$KLD$HI Lp1LHHD$ 脭LD$LL$ HI I(I) L;-$L;-I#6L;-?$)LAƅ Imu IELP0EHD$HT$MHH5#Lh IEHxMTIHP Im IELP0fDHHkIH XHqHIHH#I?SIH5ϩH8L ЦA1躬XCZH H=1蹶HL$HdH3 %(H HX[]A\A]A^A_IGLD$ LP0LD$ D$NCE1E1D$IE1HIIHIHuIFLL$LP0LL$MtI)u IALP0MtImu IELP0T$t$H ԞH=4޵H+uxE1HCHLP0Hf.E1E1E1E1D$LCD$I(fE1I@LL$LP0MLL$#AD1@H#HD$FLLD$(T$ oLD$(T$ LX…D$D$UCME1E1E1DHH HtHHF(HD$@HF HHD$8HFHD$0IHHM~*H5(HHHD$@IMqHD$8Ll$0HD$HD$@HD$[fDHHgIM~H5(H蠦HtHD$0IM~H5(H~H_HD$8ILE11E1,C H H=諳HDE1E1;C fDHB@HH$,f.E1E1JCfDE1E1 DHB@LD$ HH$HLD$ IH5'H= (1{IHHI/CE1E1 IFLD$LP0LD$IFLL$ LLD$P0LL$ LD$DLIHTE1侳CfIALD$LP0LD$IELD$LP0LD$IGLE1E1P0C3I@LL$LP0LL$IALP0D$ ?T$ H`CE1E1DH Ff.E1D$QCE1D$DD$ T$蹤T$D$ HkjCE1E1AL萾CIHwDHFHHD$0ID$E1E1D$CE1RfHB@HH$#f.LLD$LD$HIE1D$CD$f.MD$D$CIIE1D$D$CHGD$D$CH5'H=: (13IHHIm6IELP0DCfHB@HH$f.E1D$D$CD$CD$HB@LD$HMH$LLD$I)HT$0HHL=H5'}iBD$CD$IMD$CD$,H认I@MD$CD$DHwLD$ I:E1侇CjMD$CE1D$D$DD$D$)DD$!L IDLIyLܣLD$IZf.AWAVAUATMUSHHH;#L-'H|$ H=U(Ht$(HL$LD$0LH՟HH HHUH5(HH HHD$HEHH|$ HEHHH HHXLIHH'H=(H:IH, HIVH5'HH LIMX I.H5'LL¡ I/H|$LH谡HHq Ht$HHD$HHHmImH;H-C'H=(HdIH HIUH5'HHS LIIEHMP IEH虞IHH HD$1LLHIEHD$HIE I$Me(HI]0赠IH I/u IGLP0Imu IELP0I<$ID$u LP0ID$HH5'H LIMr HSH5'HH HIM LLIHImu IELP0I.u IFLP0L;= #L;=#u L;=# I/u IGLP0: H$HkH5%'HPHH H$HD$H|$ H$H5'HPHH H$IM9 H5~(1LIH I/u IGLP0Imu IELP0H#HHHhLh`LxpHL$MtIEHD$HtHMtIvHD$ID$LtHLl$0IHl$ H\$8H\$(I$@HH0I$8H0I$0H0 1AEAD$ID$ /{fH(H0H0H@(A9t$~NHcI H0H@H0Pt8nH(HR8HcR H0A9t$IM9!Ll$0H\$8H|$譖Mt ImHL$HtHHD$HHkMt I/MLt$H5'1L)HIHD$HIu IFLP0H H;-+#H;-#u H;-#HmDH;H;H@HEHP0:fL訙HH1HHUH5 'HH`HIHEHM]HEHݙIHHD$1LLHIGHD$HIG I$Mg(IHI.u IFLP0I/u IGLP0I<$u ID$LP0H'H=%(H轘HHCHHUH5r'HH HIHEHM HEHu HEHP0IT$H5'HH LHH 还IH Hh HH H'H=`(HIHHIWH5u'HH LHD$H|$ I/HT$H5'Hy H\$HHD$HHHLLYHH I.ImHmH;HCHP0t@IFLP0IGLP01HFHP0Hm\9fHCHP0WIELP0H;Bf.HEHP0ImfHEHP0*IELP0^HED$E1E1D$<HHE1H E1E1HEHP0MtIEHIEHu IELP0MtI.u IFLP0MtI/u IGLP0H|$t Ht$HHD$HHu HFHP0T$t$H H=HtH+`1HCHHP0MtI,$u ID$LP0HHH[]A\A]A^A_Ãu;HP0H;0HHP0H0H0H0"LcJHD$DHCHP0HEHP0EIELP0+IFLP0H HmAu HEHP0EaD$CD$hIME1LD$E1M1HD$9HD$,IED$-E1D$=HHD$HEE1E11D$HD$<HED$E11D$<HHB@H'H$_HvHH1D$:D$HEE1E1E1D$HD$<UHB@HH$HD$E1D$D$9HB@HH$E1D$E1D$=D$E1D$=IMD$1E1D$9E1HH57'H=h'1QHHLHHmHEHP0D$?D$TaH+IH'HED$1HD$HD$:D$>D$>H@@HH$LIRD$CD$lHB@HrH$HB@HH$HD$D$D$:IEE1D$@D$>H\HB@HTH$1E1D$D$:HD$D$nHt$HHD$HHu HFHP0D$CHD$fDHB@HH$WHB@HH$BILHD$E1D$BHD$>HED$HD$HD$:D$p:IEE11D$D$:H3HEE11D$D$:H"HED$1D$:HHB@HH$D$?D$THEE1HD$D$HD$:D$CD$HHD$LI9HؐILȐIH$賐HD$D$?D$P2L茐HL|IrHlIH\I*H$GIaL7HD$ME1mff.AWAVAUIATUSHHH^H|$dH%(HD$81H3#HD$ HD$(HHJHHF HD$MmHl' H(hE111AHLHHLH;H@u HP0HCHH5G'HFHIMH5'LyII$M9HI$u ID$LP0L;5m#L;53#u L;5-#I.u IFLP0\L謌f.ff/f/tHD$HT$H5i#Lp IHxLHH) I.uIFLP0fH+HCHP0}I]HH#H HOHL LOL@HH#SH.H5uH81kX~kZH gH=1jHL$8dH3 %(H HH[]A\A]A^A_@H#HD$L-'H= 'L袉IHHIT$H5f'HH&LII$HMI$Hu ID$LP0L-'H='L3IHHIT$H5'HH7LHHI,$u ID$LP0f諈IHUIH)H1HHL` HX萋IHLHmu HEHP0I/u IGLP0HH=L`1HLmH8L ?jA1)pXhZH %c?H=gE1'zHL$8dH3 %(LHH[]A\A]A^A_ÐH#HD$H' H(hE111AHLHHH;H@u HP0HCHH5'HHHHH5W'HiIHHmu HEHP0L;=#L;=#u L;=#DI/u IGLP0EL3mf.#|D$ H5'1LniIHj H;{#L;%A#VL;%7#ILlAƅF I,$u ID$LP0EH|$H5{'HWHH IM LLhHI$H HI$u ID$LP0H;-#H;-#u H;-}#DHmu HEHP0EHD$D$HT$H5v#Hh HEHxHQIH+ HmHEHP0L-'H=Z'LiIHHIT$H5'HHLHI$HHI$Hu ID$LP0L-b'H='LiIHHIT$H5'HHLII$HMI$Hu ID$LP0iIHH1LLHXH'HIF kIHI/u IGLP0I.u IFLP0JiIHLh1HHkIH Hmu HEHP0I/u IGLP0L;5#L;5O#u L;5I#DI.MEL-'H='LhIHHIVH5'HH LIM[ I.dL-'H=&'LgIHHIWH5 'HHm LHH; I/u IGLP0H|$H5'HWHH` IM4 gIHW H1HHLp HXjIHM Hmu HEHP0I/u IGLP0ngIH1 Lp1HLiII$MQ HI$u ID$LP0I/u IGLP0L;5#L;5k#L;5a#L hŅ I.u IFLP0UHD$HT$HH5Q#Lp IHxM]IHI.IFLP0HF HD$LnJfDH#HD$f.LXgAƅIMAE1D$,iE1HI$Hu#1ID$LP0HtHmu HEHP0MtI/u IGLP0MtI.u IFLP0t$DE1H r[H=:`|rH+KHCHP0<DIHCHHHh`IH@HD$(Ll$ HD$@H@@HH$HH[fAD$(i4DE1AD$*ifH5!'H=2'1gHHHwHmAD$QifIFLP0HeAąRHEAD$aiHHEE1E1EfLHeAŅFAD$iAf.IFLP0HEHAP0D$QiHB@HH$df.E1E1D$iAL~IHEI$E1D$iAHVDLA}D$iIHfL}IHDE1AD$ifDH5I'H=b'1KeHHH觕HmTHEHAP0D$piH5'H= '1dHHHOHmTHEHAP0D$i;bH-AD$7ipfHFHHD$ /]IMH5'LdaHtHD$(IEHHT$ HLLw\H5n'OthKDHF HHD$(HFHD$ \@AD$AiDI$AE1E1D$BiH@D$iE1AI$H&1DHB@HpH$#f.AD$iDIIME1D$iAHyAD$]iDHB@H H$H|$DAD$piDMD$iAVf.HE1E1AD$_iAD$iTDIME1D$iAHLARzD$iIHfH5Ѿ'L_HHD$ I~E1AD$iH5'H='1aHHHHm*HEHAP0D$jjH+bHlAD$i7HB@HH$kAD$MiI$ME1D$iAHHB@H^H$}I$E1D$iAHKHB@H:H$H|$I$D$iAHI$D$iAHI$D$iAHAD$jJAD$li7HD$iAAD$i AD$iL`HUL`IAD$jH|$`IAD$iLc`ILS`H H|$A`ILZH RiE1H=WiDf.AWAVAUATUHSHH^H|$dH%(H$1H#HD$pHD$xH$HHHHHRH RHMHSH WL@H;#H5\L YH81^X:tZH QH=_E1hH$dH34%(L HĘ[]A\A]A^A_DHF(H$HE H]HD$xH\$pHSHL HCHD$H|$ Hl$xH$Hr\IHe HN' L(hE1ɹAAHHAIH H8Mt$IEH$AHNIFKTfɐH\f(Xf(\f(\H9uf/jyH->'H='HZHHcHLHL$\HL$HI9 HL$rZHL$HI1H1HHHXLx HD$ \HL$LL$ HHH)#I)HR'H='HsYIHgHIWH5'HHLIIHMIHLT$YLT$HIHE1LLHhH#HIG [LT$HHI*u IBLP0I/u IGLP0H'sH{ HL{H5'HD$ HD$Hx HWHHIHD$0H|$0VHD$H5ں'Hx HWHHHHLH5m'1HHL$ZHL$HIH)uHD$HAHP0LL$I)u IALP0Hd#HHP`HHhH@pHT$HHL$8HD$@HtHHD$8HtHHD$@HtHDZME1H|$ HD$PJHD$(Ll$H\$`Ld$XLd$Hl$hL@L|$H<$@Ll$ g1%L$A\ HH;$"AI|$LL$^WI)HDMHl$(L9|$ Ld$XH\$`Hl$hH|$PRH|$HtHt$HHH$HHZHt$8HtHH$HH,HL$@HtHH$HHLt$0H5B'1L(YIIH$HIu IFLP0ML;-+#L;-#L;-#LWImAu IELP0EuADH@LP0I/AtA 11H)MtI)u IALP0H KDDH=YbI,$Au ID$LP0HH+u HCHP0HtHmu HEHP0H+|HCHP0mfDHAL $HP0L $UE1A IGLT$L1LL$H $P0LT$LL$H $LMH IALP0fHALL$HP0LL$I)IGLT$LP0LT$f(ImD:HII,$H+H|$Ll$HD$LlfH5'H='1VHHHHmTHEH11P0t H IH=W`@HHmHEHP0DIH~aHtH#HF(H$HE LHD$xHEHD$pNIHtWHtrHt+MH\$p@HH_NIH5ű'LIRHD$pHH5'L|RHD$xHIM~H5֯'LVRHH$Ie@t 11H#LAH5PHH81VUH+uHCHP0fDRH[HD$@HRHD$HlHHH1۾t H GmtE1H=U^HAHP0fHFHP0HFHP0M1AtA f.HlIHH ?G tH=IH5E'LI1CHD$0HH5Ĥ'LCHD$8HIM~H5n'LBHHD$@IQD$mHAft$DH 9H==APH+o`|HH 8H==E1OHHHB*HB@HtXH$FfDIELP0IBLP0IELP0IGLP0DHEID$~HAI*E1E1IBLP0M1IEE1HIEHtKMDI/:+L\IH+ImD$5IE1AIELP0@HB@LT$HH$HLT$IVD$HAI*I1JT$AT$Hff/H5ә'H='1CIHHsI,$ID$LAP0D$HLAr[D$HIHfLAB[D$HIHfH51'H='1BIHHGsI,$/ID$LAP0D$HfDHFHHD$0W;I|D$HADH5'H=r'1[BIHQHrI,$ID$LAP0D$$InfD^@HH|$@f.O?HAD$HDD$HE1AIEHdE1Zf.HB@HH$ f.AD$HDDD$HAMMHB@HiH$fAD$H{DH [4^HE1H==9XKD$IAI*JE1D$IAAD$HAD$ IAD$$ILAvXD$0IIHIED$IAHIEE1HHT$0HLLs8H59G'$P)HIAD$IHH5ٕ'H=ʤ'1?IHHpI,$=ID$LAP0D$^IH@LT$IAD$2I HB@HH$HH#H 2H5<jL 9AH|7H81_?Y^ HHB@HhH$IEMAD$7IHAD$HIEMD$:IAHgIEMMMAD$BIH0D$FIAeAD$^IMHE1MAD$KIAD$HaD$OIAI_E1D$uIALZ>IZI8L6>IL&>I]ME1AD$5If.AWAVAUATUHSHXH^H|$dH%(HD$H1H#HD$0HD$8HD$@HHH'HF(HD$HE LuHD$H:' H(hE111AHLHH H8u H@HP0H' H(hE111AHH|$HH+ H8u H@HP0HSH5Ж'HH@ HIMHUH5'HH HIM LL6HH H;#H;#AA H;#@AFtXH*u HBHP0H5ˠ'Ln6HH: H;{#H;A#AA H;8#A I/ImE1H*L%Ӗ'H=\'L7IH HIOH5'HHi LIIHMq IHu IGLP0L%h'H='L7IH HIVH5'HH LIIHMv IHu IFLP0f6IH 7H H1HLHXLp HD$9HL$HI I/#H)O7IH L`1HL9IH Im I.L;%#L;%`#L;%V#L8AŅ I,$u ID$LP0Er L%'H=x'L6IHt HIUH5՗'HHH LIIEHM IEHu IELP0L%'H= 'L5IH^ HIUH5('HH_ LIIEHM\ IEHu IELP0f5HHD$E 5HT$HI@ HEHLHP 1Hh7IH= I,$u ID$LP0I/u IGLP0X5IH. Mo1LL7IHP I.u IFLP0I/u IGLP0L;-#L;-^# L;-T#L5Aą- Imu IELP0E' HD$HT$IHH5&#L` I$HxMi II$M HI$NID$LP0>H]HHr*H b*HMHSH/L@H #H53L 0H816XSZH )H=7E1@HL$HdH3 %(L HX[]A\A]A^A_DH#HD$9IEHT$(Lt$ P0HT$(t$ EHHT$ 4HT$ D$gSA; H*E1HBHP0MI.IFLP0xIGHT$(Lt$ P0ImHT$(t$ 4D@HBt$ HP0t$ ,L3f.Bf( H|$T$ 3f.BT$ pff/Jf/HD$HT$f(f(H5׆#Lh IEHxL躷IHImu IELP0H+uHCHP0H!HmHEHP0f.H׉t$(HT$ 2t$(HT$ IH~yHtHQHF(HD$@HE LHD$8HEHD$0,IHtrHHtBMHD$8Lt$0HD$HD$@HD$HHG,IH5'LI0HD$0HH5T'Ld0HD$8HIM~H5'L>0HbHD$@IQD$MSA9 ft$DH \&H=4A`=H+iZHB@HtpH$fDHAHP0fIGLP0HL$@IFLP0fIELP0D"H2I?D$^SE1A; I/IGLP0LHmH*cTHB@HH$f.D$`SA; I/uIGHT$LP0HT$IEE1HIEHuIEHT$LP0HT$kT$w/T$Hff/H5'H=L'151IH HaI,$ID$LAB P0D$SLAF ID$SIHfLAF HD$SIH5LfDH5'H='1{0IHH`I,$5ID$LA@ P0D$S>fDHFHHD$0(ID$cSA; CD.HH|$.f.=D>-H0A= D$|SDH5'H='1/IH[H_I,$ID$LAG P0D$TVfDHA@HXH$f.D$SE1MAF IEHu1tAB D$SDH K"8 >SE1H=e0H9D$SAF LMM@HB@HH$H]HHbH RHMHSHL@Hu#H5 L H81#XFNZH H=E1-HL$HdH3 %(L HX[]A\A]A^A_DH v#HD$9IEHT$(Lt$ P0HT$(t$ EHHT$ ~!HT$ D$NA!H*E1HBHP0MI.IFLP0xIGHT$(Lt$ P0ImHT$(t$ 4D@HBt$ HP0t$ ,L f./f( H|$T$ f./T$ pff/Jf/HD$HT$f(f(H5os#Lh IEHxL誤IHImu IELP0H+uHCHP0H!HmHEHP0f.H׉t$(HT$ t$(HT$ IH~yHtHQHF(HD$@HE LHD$8HEHD$0IHtrHHtBMHD$8Lt$0HD$HD$@HD$HH7IH5u~'LIqHD$0HH5\~'LTHD$8HIM~H5z'L.HbHD$@IQD$yNAft$DH LH=hAP*H+iZHB@HtpH$fDHAHP0fIGLP0HL$@IFLP0fIELP0D"HI?D$NE1A!I/IGLP0LHmH*cTHB@HH$f.D$NA!I/uIGHT$LP0HT$IEE1HIEHuIEHT$LP0HT$kT$gT$Hff/H5s'H=<'1%IH HNI,$ID$LA(P0D$NLA,5D$OIHfLA,5D$OIH5LfDH5Is'H='1kIHHMI,$5ID$LA&P0D$N>fDHFHHD$0ID$NA!CDHH|$f.r*D>H0A#D$NDH5Qr'H='1IH[HLI,$ID$LA-P0D$2OVfDHA@HXH$f.D$OE1MA,IEHu1tA(D$NDH ;jNE1H=J8&D$ OA,LMM@HB@HH$OIH^iI$D$#OMA,HIEH3E11LA.+2D$COIHvHIH5o'H=~'1IH&H)JI,$lID$LA/P0D$nOA.D$@OqHB@HH$HHk#H  H5jL AHH81Y^,NMD$OA,A(D$N HB@HyH$A.D$EOMD$HOA.,HMMIA.D$JOHMD$ROA.bA&D$N~IELME1IA.HD$HD$VOA/D$nO?D$[OA.A-D$.OA"D$NIEA.D$_OHLI*LsIMHE1E1A0D$OA/D$jOL0ILIL[H !NE1H=!HHHfDAWAVAUATUHSHXH^H|$dH%(HD$H1Hi#HD$0HD$8HD$@HH HgHF(HD$ HE LuHD$H|' H(hE111AHLHH H;hi# H{' H(hE111AHH|$HH H;i# HSH5p'HH HHH HUH5p'HHz HL$HHL$IM HLHL$HL$HH H;h#H;xg#ADA H;nh#D@AFtmH*uHBHL$HP0HL$H5z'LHL$/HL$HH H;7h#H;f#ADA H;g#A H)I,$0EEH*EL-p'H=z'LIHj HIVH5ss'HH# LIIHM IHu IFLP0L-"p'H=y'LCIH' HIWH5p'HH LHIHH IHuIGHL$LP0HL$fHL$HL$HI KHL$HI H1HHHXLx HL$HI H)ImIH Lp1HL4IH I,$}I/cL;5 L;%c#1 LAŅc I,$u ID$LP0Eu HD$HT$ IHH5b#Lh IEHxMIIEML HIE IELP0H]fHHH HMHSHL@Hb#H5v L z H81eXMaZH a H=1dHt$HdH34%(H HX[]A\A]A^A_fDHb#HD$ ID$HT$LP0HT$EHHT$5HT$AH*kID$ AaE1fHAHT$HP0I,$HT$Q|@HBHP0EQL f.f(H|$T$ f.{T$ff/f/ HD$HT$ f(f(H5`#L` I$HxL虑IHI,$u ID$LP0H+t(LfHmaHEHP0RfDE1HCHLP0Hu2fDHHL$(HT$ HL$(HT$IH[~yHtHyHF(HD$@HE LHD$8HEHD$0fIHtrHHtBMEHD$8Lt$0HD$HD$@HD$ HHIH5i'LII HD$0HH5g'L, HD$8HIM~H5g'L HHD$@IQH ; qaH=b;fDH-q'HHxH99H )HCHMAsa1H5LE1E1HPH^#H81 HD$ 1 ~aH H=H+1L-)q'MiHxI9L HEIMH5HPHI^#H81 HD$ E11AaE1fDH)u+E1HAHP0MtIHIHu IFLP0MtI,$u ID$LP0MtI/u IGLP0T$H DH=H afHB@Ht}H$fDIELP0nfHAHP0KIGLP0ID$LP0sDHX\#H5]H81 H Hlf.HB@HL$HH$HHL$IpE1AaD$ zf.D$ AaHE1MIHHaM@T$T$Hff/H5C^'H=n'1 IHH9I,$>ID$LP0 afH H=H+1@L@!bIHt{fLA b!D$IHfH5y]'H=m'1IHH9I,$ID$LP0 a2fHFHHD$0/I<AaD$ [DWMHH|$f.LF!H8 afH S aH=zSfDH5a\'H=l'1IHH8I,$EID$LP05b*f.E1D$Abf.HB@HH$f. aHB@HH$f.D$A bMIvD$ AasDAbD$%DDLAbMD$ a/MD$AbID$AbH5bHT$0HLLH5'RQ#L;%P#u L;%P# DI,$Q E L%Y'H=6c'LIH HIWH5\'HHcLIIHM8IHu IGLP0L%BY'H=b'LcIHHIVH5W'HH>LIMCI.u IFLP0IHfHE1HLHhIHbI,$uHD$ID$LP0LT$I/uIGLT$LP0LT$LT$*LT$HI=LP1HLhIIEM_HIEuIELT$LP0LT$I.uIFLT$LP0LT$L;IO#L;N# L;O# LLT$LT$AI*u IBLP0E HD$HT$ IHH5M#LP IHxMLT$ LT$HII*1IBLP0"HF(HD$ L} fDHIN#HD$ f.H|$f.D$ Lf.D$(& L%V'H=X`'LIHHIVH5UU'HH LIIHM] IHu IFLP0D$`IHd  H Lp1HLHD$KLT$HI I/uIGLP0LT$I*u IBLP0L;5>M#L;5L#u L;5L#pDI."EL%U'H=7_'LIH HIVH54T'HH LIIHM IH D$(LT$@LT$HI LT$HILp1LH#LT$HI I*u IBLP0Imu IELP0L;5L#L;5J#=L;5K#0LAą I.u IFLP0EHD$L$(D$HT$ L` H5J#I$HxL{II$M- HI$u ID$LP0H+fIFT$LP0T$nIFLT$LP0LT$LLT$(T$LT$(T$}L…I.AD$L6E1A1IHHtHHF(HD$@HE LHD$8HEHD$0 IHHM~*H5Q'L/HHD$@IMHD$0L|$8HD$HD$@HD$ CfDH}HIH5uQ'LIHD$0H M~H5oQ'LH`HD$8IMD$LAft$DH H=AH+u HCHP0HUHmJHEHP0;DLH qH=E1xHHHuf.HB@HH$f.D$LAI*8E1E1IBLP0M| IEE1HIEHt{MtIHIHu IFLP0MIHIHIGLP0LJ IHIm D$ME1AfIELP0vHB@LT$H*H$HLT$IIFLP0IGLP0IELP0|ID$LP0L8AąIAD$ME1HIFLT$LP0LT$LAŅ1I$MD$MAHD$LAI*Q9LA D$MIHIH\LT$ID$0MAI*tE1D$LA{DHJfLAb D$pMIHfLA2 D$LIH)fH5H'H=W'1IHH7#I,$<ID$LAP0D$M.fDDL IH_IMAE1D$uMH@H5)H'H=RW'1;IHfH"I,$ID$LAP0D$MfDHAD$LaHAD$L9fHFHHD$0OID$rMAIEHE1]DHB@HH$fAD$MDHB@HnH$]fIMAE1D$MHD MAE1D$wMCHB@H&H$f.IMAE1D$MHAD$MDMD$zMAfMD$ MAPf.LABD$)MIHZfMD$MAf.H5E'H=T'1IHUH' I,$VID$LAP0D$HMfDIMD$MMAHAD$MIEMD$MAHIEE1H'HT$0HLLH5&9LE1AD$+MrHB@H}H$7HsIH5D'H=S'1IHSHI,${ID$LAP0D$MD$.MAAD$HMAD$MHB@HH$D$5MAIAD$9ME1H{HB@HH$IEMAD$MHDfDH LE1H=OIEMD$MAH1IEMD$MAHAD$MD$MA?MHE1AD$_MAD$MMHE1AD$MXD$MAAD$MFH]SLUILEI.L5ID$MAAD$DMLIM*LILISME1AD$MDf.AWAVIAUATUSHHHVH LnIL1:HHNI~ H5K'HWHHIMI~ H5J'HWHHHHH5P'1H#IHH+=I/#H=#HHH`LxhHXpHtHMtIHtHHL$IVH}$LH$tH$HHL$HtH)u HAHP0MtI/u IGLP0HtH+u HCHP0H5A'1LSI,$HHTH;e=#H;+<#u H;%=#u{H+D~HUHHUHu HEHP0HH[]A\A]A^A_ÐIGLP0HCHP0I/f.ID$LP0[HXH+Au HCHP0EoA<fDH D1H=+HEHP@fDH ;1H=)H;#LAH5HH81]H+uHCHP0DIH/H 6];1H=4HIDHB@HH$fA;DHB@HH$f.I,$tID$LA;P0I,$<H+A;HCHP0~fDA <mHB`Ht}HHHYHHtXHKHrLkH+HCHP0IHWHVH9#H5H8;HHHtHTHHLHߩt I_IIRID$LP0A;FfDAWAVAUATUSHHxHnH|$dH%(HD$h1H9#HD$@HD$HHD$PHD$XH H H HF0HD$(HC(HD$HC HD$HCH$HK' H(hE111AHH<$HHH8u H@HP0HIK' H(hE111AHH|$HHH8u H@HP0HJ' L(hE111AHH|$AIH H8u H@LP0HSH5?'HH4HIM HUH5?'HHHIM?LκLLL$ LL$ HIyH;7#L;6#AA L;7#A HI*uIBLL$0LLT$ P0LL$0LT$ IT$H5?'HHLL$0LT$ LLT$ LL$0IM|LϺLLL$ LL$ HIH;7#L;5#AA L;6#@A t\I* H5I'LLL$ LL$ HIH;6#L;|5#AA L;s6#A I/u&IGT$'H=lH'LIHH HIWH5A'HHLIIHMqIHuIGL$LP0L$L-p>'H=G'L$LL$HIM HIWH5?'HHL$LL$IIHMvIH L$L$HIH1HLHXHEHh L$HII. I/ L$TL$HILh1LHL$HII* I/ L;54#L;5^3# L;5T4# LAŅI.u IFLP0E L-<'H=xF'LIHCHIVH5?'HH]LIM:I.u IFLP0L-<'H=F'LIH"HIVH5='HHaLIMfI.uIFL$LP0L$L$L$HI[HE1LHHhI$L` L$ L$HISI*u IBLP0I.u IFLP0oIH6Lh1HLH$L$IIMTHIuIGL$LP0L$I*u IBLP0L;52#L;5_1# L;5U2# LAŅLI.u IFLP0EAL-:'H=yD'LIHHH5='L2IHI.u IFLP0L-:'H=(D'LIHHH5a<'LIHI.uIFL $LP0L $L $L $HIUH1LHHXI$L` L $-L $HIIBHIuIAL$LP0L$I.uIFL$LP0L$L$yL$HILP1HLIHI/uH$IGLP0L$I.uIFL$LP0L$L;0#L;k/#E L;a0#8 LL$L$AI*u IBLP0EHD$HHMH5.#ILP IHxARHT$8LT$9Y^HIL$$bAdfDI*u IBLP0MI/ IGLP0fDL@IH5.9'LIzHD$@HHkHHH HMHUH'L@H.#H5vL zH81eXbZH aH=E1cHL$hdH3 %(LXHx[]A\A]A^A_DH.#HD$(rIAT$0LLT$ P0T$0LT$ E_LLT$ .LT$ C$NARcE1f.IFT$fHF0HD$XHC(HD$PHC LHD$HHCHD$@IH~EHHu>MlHD$@H$HD$HHD$HD$PHD$HD$XHD$(HZM~HT$@HLLH5&ybfD$LA1c$H DE1H=eHHHS?IGL$LP0L$IGL$LP0L$gfIFL$LP0L$=fIBLL$ LP0LL$ 0HmIBLP0IBLP08IGLP02H5!2'LHHD$XIf.D4HFLHD$@IH53'LMHD$HHIH52'L,HD$PHID$NA@c^fDHB@HH$fL׉T$fDDAc$\vfD$TAcfDHB@L$HBH$LL$I$M$\Ac$VAcIMAcE1$\HM$\AcG$]AdeIALc$NH$YAc IAd$\HLAd$^IH$\AdMfDLIHIE1A$d$^HHIHH##AH5xjL zH H8H1W_bAXHIH5C%'H=5'1IHJH!Im;IELAMdP0$_$^A!dHB@HH$HH"#L H5jAH H2H81AYbAZDHB@HH$IA&d$^H$XAcAIA)d$^H$TAcIA1d$^H]IMMA5dE1$^HB$_AMd$VAcMHE1A:dM$^LAYd:$`IHwLLL$0LT$ I$^A>dE1E1@$]Ad.LIH M$`A^dL=IH5"'H=3'1pIH'HImIELAdP0$aLL$IA[dI.$`ZE1{A`dIME1MAcd$`HHAkd$`$`AodE1$`Atd $aAd$`AxdE1$_AIdLILI$aAdMH JcE1H=KH \"cAH=[H+E1fAWAVAUATUSHHHnH|$ dH%(H$1H#HD$`HD$hHD$pHD$xHH H( HF0HD$0HC(HD$HC HD$HCHD$H1'H(hE111AHH|$HHHH8u H@HP0HQ1'H(hE111AHH|$HH$H8u H@HP0H1'L(hE111AHH|$AIH_H8u H@LP0HUH5%'HHHIMHSH5%'HH`HIMLκLLL$(LL$(HIAH;#L;=#AA L;=#@A>I/uIGLL$(LP0LL$(IT$H5%'HHLL$(LLL$(IMLLϺLT$8LL$(-LL$(LT$8HIH;0#L;=#AA L;=#@AtfI/PH5!/'L׺LL$8LT$(LT$(LL$8HIH;#L;=#AA L;=z#A I*uIBLL$8L׉T$(P0LL$8T$(I.x I) E I/c L-$'H=}.'LIHHIQH5''HHLLL$LL$IIHMIHu IALP0L-$'H=.'LIHHIQH5%%'HHLLL$LL$IIHMIH_IHHE1LLHhH!'LT$HIB LT$HII.<I*LL$cLL$HILH1HLIHI/;Im@L;5#L;5o#dL;5e#WLAŅI.u IFLP0ESL-#'H=,'L!IHHIVH5%'HHVLIM[I.uIFLL$LP0LL$L-"'H=,'LL$LLL$HIHIVH50#'HHLL$LLL$IMI.uIFLL$LP0LL$LL$LL$HIH1LLHXH'LL$HIF LL$HI6I/uIGLL$LP0LL$I.uIFLL$LP0LL$LL$>LL$HILh1LHLL$wLL$HII0HIu IALP0I/u IGLP0L;5i#L;5/#lL;5%#_LAŅoI.u IFLP0EL- 'H=I*'LIHHH5#'LIHI.uIFLT$LP0LT$L-e 'H=)'LT$LLT$HICHH5!'LLT$LT$HI8I.uIFLT$LP0LT$LT$LT$HII$1LLL`Hu'LT$HIF LT$IIMHIuIGLT$LP0LT$I.uIFLT$LP0LT$LT$LT$HILh1LHWLT$HII*u IBLP0I.u IFLP0L;=O#L;=#L;= # LAŅkI/u IGLP0EJH='qIHH5!'HIHI/u IGLP0H=c'.IH+H5'HHD$LL$HII)uHD$IALP0LT$H= 'LT$LT$HIH5!'HLT$HD$HLL$LT$HHSI)uHD$IALP0LT$HL$LT$HL$OHL$LT$HIHE1HHHhHHX LT$HL$qHL$LT$HIHHHuHALT$HP0LT$I/uIGLT$LP0LT$LT$貾LT$HILh1LHI$L` HD$LT$LL$HIfI*uIBLL$LP0LL$I)u IALP08IHLh1HLHD$vLL$HIeI.uHD$IFLLL$P0LL$LT$I)uIALT$LP0LT$L;P#AL;#DL; #tLLT$课LT$AI*u IBLP0EHD$ Ht$0MHHLP IHxMLT$VLT$HII*uIBLP0DHm-H+8FfDLIH5>'LIBHD$`HH HkHHH ҲHMHUHL@H}#H5FL JH815XmZH 16H={E13H$dH3 %(LbHĘ[]A\A]A^A_H#HD$00IAT$(LP0T$(E L…D$E1D$fmME1fI/uIGLT$LP0LT$MtI*u IBLP0MIm}IELP0nfDIFLL$8LT$(P0LL$8T$(I)l5DH|$螶IH H|$臶HD$H H|$nHD$H M H|$ H|$ HD$LH9D$ HD$ Lx IH@HD$ HD$0H;#SL5'H=E"'LݹIHHIPH5'HHLLD$LD$HIHHzIHuI@HL$LP0HL$HL$HL$HIHD$01LHLD$(HI@H[#HI@ HL$LD$(HIHHHuHALD$HP0LD$I(u I@LP0I>u IFLP0H9!'AvI~ IWH58'HD$@IFHD$HHHLHD$H|$IWH5'HHLHHH5 '1HHL$(*HL$(H+H)uHQHD$(HR0HD$(H(u HPHR0H #HHH`HPhH@pHL$8HT$(HD$0HtHHD$(HtHHD$0HtHsLL$HHD$PHD$@I H~jLd$XLd$ Hl$@Hl$L|$HIH\$H\$Lt$MDHHLLgIIFM9uHl$@L|$HLd$XH\$Lt$H|$PGH|$8t HL$8HHD$HHu HAHP0HL$(HtHHD$HHu HAHP0HL$0HtHHD$HHu HAHP0H5'H|$1蒹HL$IHHD$HHu HAHP0ML;- #L;-U #L;-K #LImuIET$LP0T$(H pH=uI.IFLP0D$E1D$nfIGT$(LP0T$( LLL$8T$(OLL$8T$(HVIHPHcH>fHF0HD$xHC(HD$pHC LHD$hHCHD$`IHK~FH`Hu?MHD$`HD$HD$hHD$HD$pHD$HD$xHD$0HM~HT$`HLLɰH5&ylDH 'mE1H=ED$E1D$6mDT$t$H H= AHmu HEHP0HtH+u HCHP0M]I,$RID$LP0BDD$D$Em{IALP0fIBLL$LP0LL$HD$IFLLT$P0LL$LT$DIGLL$8LLT$(P0LL$8LT$(DIGLP0IELP0H5'L1HGHD$xI4f.DHFLHD$`蟮IH5'LݲHD$hH IH5'L輲HD$pHIDIWH5'HH LIM" IWH5'HH LHHP H5'1HHL$"HL$HH H)uHD$HAHP0HT$H*u HBHP0H#HLX`LPhLHpMtIMtIMtILL$8LT$0L\$(rHL$HT$LH|$ HD$覰H|$I詭L\$(LT$0LL$8Mt$I+uICLL$LLT$P0LL$LT$MtI*uIBLL$LP0LL$MtI)u IALP0H5~ '1LI.HuHD$IFLP0HL$H@ H; #H; #[H; #NHHL$`HL$AH)u HAHP0(E$H ئH=D$E1D$n"f.D$D$TmHB@H]H$fLLL$@T$8LT$(躱LL$@T$8LT$(D$E1E1D$VmMI.uIFLT$LP0LT$MHB@H"H$fID$XmE1D$HIHE1DH5'H=R'1;IH HImLIELP0D$D$mDLD$ID$nHtLD$ID$nH|ID$[mD$H@HB@LL$(HH$LLL$(IH5'H=R'1;IHHIm3IELP0D$D$mDID$]mD$Hv@H5Y'H='1ðIHpHImIELP0D$D$An%ImKI> I/IGLP0@H5'H=R'1;IHHImIELP0D$D$mDHiD$D$qmuDۭHZD$D${mMD賭HKD$D$m%DH5'H='1kIHHIm<IELP0D$D$mDD$nE1D$IH IALE1P0MG@HB@H3H$f.D$D$m[DD$nD$fDHB@HOH$E1MD$D$nH)DL IH#(IMD$%nE1D$HL$3(IHy,D$D$mtD$D$)nD$D$AnJID$`mD$H(IEMD$.nD$HYLD$ID$MnHDD$D$mD$D$2nME1DD$D$mLLL$LL$HIRIE1D$RnD$HHfIHH3"H `H5jL AHH81լY^lHIiH5&H=['1DIHHImIELP0D$D${nA5(IHu I@LP0H QDlf.HB@HH$AA8(H)u HAHP0H DfHB@HfH$D$D$OnEHHuHALD$HP0LD$IA@(H6HH"AH5~jL H ҞH8H1]_lAX"Dd(HB@HH$EID$TnD$HHB@LL$HH$LLL$I%HL$HHD$HHu H|$HGP0H ĝf(H=bĴJHB@H_H$D$D$mID$WnD$HHt$HHD$HHGH).H 0h(H=΢0ID$_nD$HzIE1MD$cnD$HD$D${nHB@HH$'LHE1D$hnID$L)D$ID$nH'I.IFLP0'PDLhLL$(IkHB@HrH$LD$E1E1E1D$lnD$D$mI.AA'D$D$=nD$D$mLLT$0LT$HIMD$D$n(D$E1D$nD$D$mPLLL$SLL$I (H5&H= '1rIHQHImIELP0D$D$nLLL$קLL$IE1E1D$D$n8E1D$D$n IMME1D$nHD$MMD$D$nMHE1D$nD$"ED$E1D$n?E1E1D$D$nD$D$nrD$D$wnLŦI/LLD$谦LD$HcL蛦HD$iL艦LL$InLtHsE1D$D$n|D$D$n/E1D$D$nE1D$D$nE1D$D$n}E1E1D$D$nbLԥHH5&H= '1IHGHcImIELP0D$D$oiLqILHID$nD$H4HID$nD$D$D$oMuD$D$nD$D$nrD$D$oD$D$nD$D$nE1D$D$nE1D$D$nIALT$LE1P0LT$D$D$n?HAHP0H|$HL$HGP0HL$IFLP0ME1IFHL$LA'AP0HL$'AWAVAUATUSHHxHnH|$dH%(HD$h1H"HD$@HD$HHD$PHD$XH H HN HF0HD$(HC(HD$HC HD$HCH$H' H(hE111AHH<$HHH8u H@HP0H' H(hE111AHH|$HH# H8u H@HP0Hm' L(hE111AHH|$AIHg H8u H@LP0HSH5L&HHHIMHUH5 &HH LL$ HLL$ IMLϺLLL$ @LL$ HIH;H"L;"AA L;"A HI(uI@LL$0LLD$ P0LL$0LD$ IT$H5g&HHLL$0LD$ LLD$ LL$0IMbLLLL$ }LL$ HIH;"L;K"AA L;B"@A{ t\I(- H5v'LLL$ LL$ HIH;"L;"AA L;"A I/u&IGT$I)u IALP0Imu IELP0L;="L;=Q" L;=G" LAŅI/u IGLP0EHD$HHMH5S"ILp IHxAVHT$8Y^IIMHIuIFLP0@H+HmfDLHIH5&LI肕HD$@H(HkHH"H HMHUHiL@H"H5L H81uXOZH q3H=E1sHL$hdH3 %(LHx[]A\A]A^A_DH"HD$(IET$0LLD$ P0T$0LD$ E LLD$ >LD$ $}E1APPI(u I@LP0MI/IGLP0fDIAT$0LLD$ P0ImT$0LD$ oD@H<$藕f.$dH|$zf.jf(xH|$L$Xf.HL$,f/$ff/f/HD$f(HT$($H5"Lh IEHxL#IHImgIELP0XI@T$ LP0T$ wzH ? PAH=>H+E1HCHP0HtHmu HEHP0MI,$ID$LP0y@LljT$f.HF0HD$XHC(HD$PHC LHD$HHCHD$@褍IH~EHHu>M<HD$@H$HD$HHD$HD$PHD$HD$XHD$(HM~HT$@HLLH5i&蔤yOHfD${A/P$H DE1H=褞HHHs_IGL $LP0L $RI@LL$ LP0LL$ IAH $LP0H $fHAHP0IGLP0IELP0H5&L聐HHD$XIf.HFLHD$@IH5E&L=HD$HHIH5 &LHD$PHI0DDO$}A>PfDHB@HH$&fLljT$&H=&1蠌IHaHImoIELAOQP0$%HB@HH$E1A!Q$*HH"L H5jAH H<H81aAYOAZA&Q$HB@L $HH$LL $I $APiM$A)QeDeIA+Q$HbM$MA3QLLL$0LD$ I$APIE1A7Q$H$AOQLA[Q$IH$APM$MAz1DWH7WIH'WIzTHH"H5HH8QvHEIHVI)HtHgQHHI6THH"H5HH8dQLVHzVHE/fHB`H0HH}TH3OHHHEH2HHL$(HI~"H)uHD$(HAHP0LT$(Ht$8LLT$(m=LT$(HH"I*uHD$(IBLP0HL$(HL$(?HL$(HI!HD$H1LLLT$(HIJ IBBLT$(HH(I/uHD$0IGLP0HL$0LT$(I*uIBHL$(LP0HL$(H\$HHHD$(HHuHCHL$(HP0HL$(HLHL$(;HL$(HI&H)u HAHP0Lb:HH&H5&HLHD$(IHL$(!H)u HAHP0Hl$LIML|$fIGLP0NIFLP0mH@LP0I.Xf.HCHP0IFLP0H+f.IGLP0I.f.IBLP0 HEHP0HD$H;R"bOIBLP0Hm/IFLP0LT$I*DLXHD$HHD$ E11E1HD$8HD$@HD$HD$D$(?qD$0yDHtH)uHAL\$HHP0L\$HMtI+u ICLP0T$0t$(E1H 2H=[AIMtI,$u ID$LP0HL$HtHHD$HHu HAHP0MtImu IELP0HT$HtHHD$HHu HBHP0Ht$HtHHD$HHu HFHP0HL$@HtHHD$HHu HAHP0HT$8HtHHD$HHu HBHP0Ht$ HtHHD$HHu HFHP0H+u HCHP0Hmu HEHP0H$dH3%(LHĘ[]A\A]A^A_fD1y6HD$HHl$LE11HD$ E1HD$8HD$@HD$HD$D$({qD$0|I\$@HHB1H 21HMHSH6LD@H܏"H5:L 7H81=XpZH 0H="?E1GDHwHHJHcH>fDHF8H$ID$0HD$xID$(HD$pID$ HHD$hID$HD$`l5IHHIHcH>fDE11E1E1HD$ HD$8HD$@HD$HD$HD$D$()qD$0vfHD$ E11E1HD$8E1E1HD$@HD$HD$HD$D$(.qD$0vMt.I/u(IGHL$XLL\$PLT$HP0HL$XL\$PLT$HMt.I.u(IFHL$XLL\$PLT$HP0HL$XL\$PLT$HMI*IBHL$PLL\$HP0HL$PL\$HHXSHD$HLE11E1HD$ HD$8HD$@HD$HD$D$(XqD$0z=DE11E1E1HD$ HD$8HD$@HD$HD$HD$D$(1qD$0vfH5&H=&1k:HHD$Hl HjHHD$HHHCHLP0D$(qHl$D$0E11E1HD$ HD$8HD$@HD$HD$AHB@HdH$f.E11E1E1HD$ HD$8HD$@HD$HD$HD$D$(AqD$0yf.IGLP0Hl$LD$(qD$0IH5Y&H="&1 9HHD$H HbiHHD$HHu HCHP0Hl$LD$(rD$0f.Hh1IH5&HI5HD$`HH5&H5HD$hH IM6HD$pH\$`Hl$hHD$HD$xHD$(H$HD$0.fDH5&H)5HtHD$pIM~H5o&H5HtHD$xIM~H5&H4HtH$IM]HT$`HHL1H5B&G7p^HFHHD$`70IL8I4E11E1E1HD$ HD$8HD$@HD$HD$HD$D$(DqD$0y&fIE11E1D$(IqHD$ HD$8HD$@HD$HD$HD$D$0yD/HD$HH\$HH@HuLE11E1HD$ HD$8HD$@HD$HD$HD$D$(ZqD$0zfHB@H3H$~f.LE11E1HD$ HD$8HD$@HD$HD$HD$D$(]qD$0zf.HMHD$HHl$LE11HD$ E1HD$8HD$@HD$HD$D$(qD$0}LE11E1HD$ HD$8HD$@HD$HD$D$(bqD$0z*Hl$LE11HD$ E1HD$8HD$@HD$HD$D$(qD$0fDHB@H.H$fDD$(qHl$LD$0E11E1E1HD$ E1HD$8HD$@HD$HD$Hl$LE11E1E1HD$ HD$8HD$@HD$HD$HD$D$(qD$0}fHB@HH$f.Hl$LE11HD$ E1HD$8HD$@HD$HD$HD$D$(qD$0}DH5&H|$O=IH11HwFIH I/uHD$IGLP0LT$H5j&H|$LT$HPs"H5H81"!{HD$HHl$LE11MD$(sHD$D$0HD$HHl$LE1MD$(sE1HD$D$0HD$HHl$LE1MD$(sME1HD$D$0OHD$HHl$LE1MD$(sE1HD$D$0HD$ HPHiHD$ H@HH\$HXH@H\$@HD$8HD$HHl$D$(rLMLt$ HD$D$0E11E1HD$ Hl$LL|$MD$(sE1D$0HD$HHl$LE11MD$(rHD$D$0HD$HHl$LE1ME1Lt$ D$(sHD$HD$ D$0BHD$HHl$LD$(sMD$0ME1HD$HD$HHl$L1MD$(sE1HD$D$0HD$HHl$LE1MD$(sI1HD$D$0~HD$HHl$LE1ME1E1D$(sHD$D$0KHD$HHl$LE1M1MD$(sHD$E1D$0IHD$HHl$LE11MD$(sHD$D$0#HHD$HHl$LE1MD$( sHD$D$0HD$HHl$LE1MD$(LMHEH}k"E1H81XHD$HE11Hl$LT$PD$(rHD$D$0HD$ HD$8HD$@HD$E114HD$HHl$LE1MD$(r1HD$D$0HD$HHl$LE1MD$(-sMHD$D$0HD$HHl$LE1MMD$(,sHD$D$0HD$ [HD$HHl$LE1MMD$(+sHD$D$0HD$ "HD$HHl$LE1MD$()sMHD$ HD$D$0HD$HHl$LE1HD$ MHD$D$(!sD$0HD$HHl$LE1MD$(sLt$ HD$HD$ D$0EHD$HHl$LE1MD$(sE1HD$D$0HD$HHl$LE1MD$(sLt$ HD$HD$ D$0fDAWAVAUATUHSHxH^H|$dH%(HD$h1Hi"HD$PHD$XHD$`HH H HF(HD$(HE HD$HEHD$H{& H(hE111AHH|$HH H8u H@HP0HY{& H(hE111AHH|$HH<H8u H@HP0HSH59p&HHHIMXHUH5 p&HHLT$ HLT$ IM2L׺LLT$ -LT$ HIH;5h"L;-f"ADA L;-g"DA: tnImuIELT$ LP0LT$ H5z&LLT$ LT$ HIH;g"L;-f"ADA L;-vg"A I*NI,$EImOEYL5p&H=y&L0IH4HIT$H5r&HHTLII$HM I$Hu ID$LP0L5o&H=)y&LIHHIWH5>p&HHLIIHMIHuIGLT$ LP0LT$ LT$ LT$ HIHD$1LLL\$ HICHl&LT$HIC LT$L\$ HIIHI9 I+ eIHLx1HLIH Im! I,$ L;=e"L;=ud" L;=ke" LAą%I/u IGLP0EAL%n&H=w&L'IHYHIWH5p&HH4LIIHM2IHu IGLP0L5m&H=$w&LIHHIUH5An&HHLIMvImu IELP0IHHD$1LLLT$HIBHj&HIB LT$HII.uIFLT$LP0LT$I*u IBLP0vIHM}1LLII$MHI$uID$LT$LP0LT$ImuIELT$LP0LT$L;c"L;^b"L;Tc"LLT$LT$AI*u IBLP0EeL%k&H=nu&L IH_HIRH5n&HHLLT$LT$IIHMIHuIBL\$LP0L\$L%fk&H=t&L\$L L\$HIHH5l&LL\$ LT$LT$L\$ HIIHIuIBL\$LP0L\$L\$ L\$HI|HD$1LLL\$ HIBH]h&LT$HIB LT$L\$ HII,$uID$LT$LL\$P0LT$L\$I*uIBL\$LP0L\$L\$ L\$HLh1LHHD$2L\$LT$HI I+uICLT$LP0LT$I*u IBLP0L;-a"L;-_"L;-`"L AąImu IELP0EOHD$Ht$(HHLh IEHxMIHImu IELP0H+H]@HHH HMHSH}L@H_"H5^ L bH81M XgZH IH=E1KHL$hdH3 %(L$Hx[]A\A]A^A_DH_"HD$(QID$LP0E*L, ADžD$ )A_gE1Imu IELP0M6IHIH#IGLP0@IBLP0I,$nfDIELP0EH|$ f.sD$ H|$e f.UD$Q ff/D$ f/D$Y t$f/5HD$Lh IEH@HD$HD$(H;N^"L%g&H=p&L:IHHIVH5h&HH LIIHM IHu IFLP0kIH HD$(1LLHIFH]"HIF II$M HI$u ID$LP0I.u IFLP0I?u IGLP0Ho&AwI IUH5i&HD$8IGHD$@HH LIM IUH5i&HHWLIMH5/o&1L H`I,$uIT$HD$ LR0HD$ H(u HPHR0H1\"HHH`HPhH@pHL$0HT$ HD$(HtHHD$ HtHHD$(HtH Ld$@HD$HHD$8I H~DH\$8H\$Hl$@LI@L$D$HHHEL9uH\$8Hl$@H|$H H|$0t HL$0HHD$HHu HAHP0HL$ HtHHD$HHu HAHP0HL$(HtHHD$HHu HAHP0H5_&1LXI.Iu IFLP0MtL;%e["L;%+Z"L;%!["LI,$Au ID$LP0%EH KH=TPI/IGLAgE1P0D$ 3VfDLLT$ SLT$ fIHC}HtH%HF(HD$`HE LHD$XHEHD$PIHtvHHtFMHD$PHD$HD$XHD$HD$`HD$(fDHHIH5c&LIHD$PH{H5db&LHD$XH6 IMxH5a&LH$HD$`II'EgH H=AH+u HCHP0HaHmVHEHP0GfD$ )ATgfT$ DE1H YH=cHHHuDHB@HH$Af.ICLP0IBL\$LP0L\$ID$LP0IELP0D Lo$IHH H=D$ 3AgE1HIIE1D$ )AVgHIH IBL\$LMP0L\$MfMgsfHB@LT$ HH$HLT$ IMH5X&H=i&1kIHdH4I,$ID$LP02gfIE1D$ )AXgHIHu IBLP0I$HI$H1ID$LP0!L6gIHdDIUH5Ec&HHLHD$ H|$ IUH5c&HH4 LIMH5h&1LJIH< I,$u ID$LP0I.u IFLP0HU"HLp`L`hLxpMtIMtI$MtIH|$L$D$HD$(zH|$(HD$MtI.u IFLP0MtI,$u ID$LP0MtI/u IGLP0L|$ H5Z&1LdIIHD$HIu IGLP0ML;5fU"L;5,T"ML;5"U"@LI.Au IFLP0$EH|$IHp$LAgD$ 6IHNf2g#H5U&H=f&1kIHH1I,$VID$LP0.gfHFHHD$PI\IE1A[gD$ )HH5T&H=e&1IHH71I,$ID$LP07hDfH*jgDI,$DhI?IGLP0UH+tgDH5AT&H=*e&1IHHo0I,$ID$LP00g|f.D$ 6E1AgI$HsE1f.HB@H'H$f.DNHB@HdH$f.D$ 6AgMM9IMAgD$ 6H+HMAgD$ 6.gD$ 6AgI.D7hTL8!hIH6I$D$ 6AhHI$E1Hs0gHT$PHLLH5&gg?ID$ 6AhHL#IH[I,$E1D$ 8A&hfDH 3&6gE1H=0H5Q&H=b&1IHH-I,$ID$LP09OhHB@HZH$HA$IHu IFLP0H Df.HLT$ I2gAA$I,$u ID$LP0H 1DD@HB@HH$D$ 8A#h`HI$u ID$LP0IA$H(HHN"H H5jL AHH81Y^f=HB@HVH$%DDI$MD$ 8A(hHHB@HDH$EI.u IFLP0H %H=@HB@HH$I$MD$ 8A+hHI.2I,$H  %H=UI$MMD$ 8A3hHIMA7hE1D$ 8HD$H9OhrHB@HhH$V$rMHE1MD$ 8AH=^E1@Lt$0gfDHEI.u IFLP0H$C&HHmuHEHP0HC&HHiDLxIHLHD$ E1E1AHD$A9HD$HD$(HD$HHH$HcH>fHF0H$ID$(H$ID$ HH$ID$H$eIH~lHHu)M~-H5jF&HH H$IMu H$H$H$L$HD$0HuL8IHHD$ E1AA:9HD$HD$HD$(HD$[HB@H) H$fHD$ E1E1AHD$A!9HD$HD$(HD$H)HALD$0HP0LD$0DHD$ E1E1AHD$A$9HD$HD$(HD$@H"LE1E1HD$ HD$AA)9HD$HD$(HD$9fI@LP0H|$pHD$HGP0LD$HD+… H|$pHHHHHH HEH8"H51H81_HD$ E1E1AHD$An9HD$HD$(HD$KHFHH$\IM@襺HUeDH5&H=z!&1cHHHH+HCHP0e@3H_eE1AeD$*fHB@H(H$ f.LeHHLDAfD$DH5&H= &1sHHHH+8HCHP0e@HB@LT$H|H$LLT$ID$AfILHIiME1@ILAfMD$E1HweHHSH5;&HHlHIMLHSH5&HHHIM_H5&1LEHHI.uHD$IFLP0HT$H*u HBHP0H "HHP`HHhLppHtHHtHMtIHL$ HT$蟹D$H<$LHD$訷H|$I۲HT$HL$ HtH*uHBH $HP0H $HtH)u HAHP0MtI.u IFLP0H5 &1LII/Iu IGLP0M L;5V "L;5 "L;5 "L輷I.Au IFLP0h!EH 9H=CHD$AeE1HIILD$AfHE1*f H6fIHyeIAfD$H[HT$@HHLձH5J%5dD$AfkD$Ae=HB@H3H$@ImDI?H+HIH IE1A;fD$HIME1D$AeHIH18D$AeeH5? &H=&1HHHUH+HCHP0df\HjIHD$AeE1He D$A8fHB@HH$I.D\LIHj!VHH"H ީH5sjL uAHH81SY^dLl!HHDIA=fD$HHB@HH$5IA@fD$HIAHfD$HIME1ALfD$HdfH@pfIHAHIAQfD$#sevI*AUfD$E11A!HHu HAHP0H lDH=YfHB@HH$G&feHAuf^D$IHAlA!I.u IFLP0H lDDH=­p(HIuIFH $LP0H $HA!HLcIH5&H=&1薳HHHH+HCHP0fHB@HH$#!NHL$HH$HHu H|$HGP0H o!H=Ӭ聽#@HB@HmH$emHB@HH$D$ArfgLRLT$IUHT$HH$HHgH)NH եo!H='ռwID$AwfHh!QHB@HH$~IAzfD$H/I/h!HB@HcH$aHAfD$HD$AfHP"H5II/AhA!IfID$AfHHD$AfE1H`fh}!(HD$AfWL菱I'IGLAhA!P0L_IYHHL$JHL$I|fH&HHIHIHHD$ LL$L$IHAHP0H|$H $HGP0H $H _!eE1H=\IGLP0IGLP0LAWAVAUATUSHHXHndH%(HD$H1HD$ HD$(HD$0HD$8HH@L~Hn Lf(H~01詯IHHLHHHPHLuMHmu HEHP0IWH,IGHH$L;%"mH &H=&H觫HH HHUH5\ &HH|HHHEHHKHEHL= &H=&L@HHHHUH55 &HHmHIHEHMDHEH_uHHII$1HHL`Lx 语IH3H+u HCHP0Hmu HEHP0I<$u ID$LP0H&At$I|$ Il$IH<$MHHLLĩH\I<$uoID$LP0bHk@HH!HH5WUL ZAH ӠH818X ZH ȡH=E16HL$HdH3 %(LHX[]A\A]A^A_HEHP0;HEHP0H}JHrIIRFH<$HL$ML跨H&H=&H!HH5HHUH5 &HHHHHEHHEHHu HEHP0H|$pIH:HHL`1HH}IHH+HmHEHP0DH.IHHcH>f.HF0HD$8HC(HD$0HC LHD$(HCHD$ 责IH~SH(Hu!H5&L֧HD$8H=IML|$ Hl$(Ld$0H|$8RHuHS HHfH WH=6E1ʴDKH fD @H!H5zH8zHIHuH_!H5mH8@˧HmH$DL譧HCHP0 HEe HHEHu&HET$ H4$P04$T$ DHH+HCT$ H߉4$P04$T$ L踡IH5^&LIHD$ HH5-&LեHD$(HIH54&L败HD$0H`IDHFLHD$ 7I랩HB`HH H4HHHHCHWHxH+IHCHP0HE HfDHEHs1wnHB`HHL莦HDIMIOHIGI/IWH$LR0H$} fDLHX HHDU fHB@H:H$nf.H5 HHRDZ ;fDHB@HH$}f] I/=@IGT$ L4$P0T$ 4$HR7 HB@H&H$4f.: H+I1DI,$< uID$4$LP0H+4$dfIߺHA 5HT$ HLLH5r%轵 HH!H ZH5¢jL ğAH7H81袥Y^ eHH!AH5~jL H H8H1]_ AXHHu!L IH57jAH HH81AY AZHQH5HAI蔢HH!H5H8fHEH7IHHtH聟HʖHH4L\HIiH襤H7 ~LtdL@HJ!HH5hH81H+HCHP0H!LAH53HH81ΣI/IGLP0f.AWAVAUATUSHHXHndH%(HD$H1HD$ HD$(HD$0HD$8HRHHnLn Lf(H~019IH-LH袣IH6HPHIEf$Hf;Imu IELP0HUH3H]HH9zfXL;%1!H-%H=&HIH1HIUH5%HHLHIEHHIEHL=%H=&L趞IHzHIUH5%HHLIIEHMIEHIHI$1HHL`Lx %IHHmu HEHP0Imu IELP0I<$u ID$LP0H^&At$I|$ Ml$I葠4$MHLL詛HљI<$ID$LP0fDL8IH5%LIrHD$ HXHkHH!H<H5UL AH H81xX` ZH kH=E1vHL$HdH3 %(L HX[]A\A]A^A_IELP0IELP0\L轝 4$HL$MwHP%H=&HqIHHIUH5v%HHLHIEHIEHHu IELP0H|$连IH艜HHL`1HH̞IHHmH+HCHP0@H>IHHcH>f.HF0HD$8HC(HD$0HC LHD$(HCHD$ IH;~SHPHu!H5%L&HD$8HIMPHl$ Ll$(Ld$0H|$8HucH IHfH H=E1D蛛H fD @HtHyH5H!H8跘BHtf $gH%HHuH|!H5H8]DHHH!H5H8 fDHEHP0fIE HIEHu&IET$ L4$P04$T$ DHHmHET$ H4$P04$T$ gHFLHD$ 返IH5U%LHD$(HIH5\%LܘHD$0HIIE HIEH1'3HB`HHYLNHHHHCHt)HH+HSH$HR0H$L@H!HH5H81RH+u HCHP0HH5ӘH <HB`HHNHhHHHhHMHlH]HmHEHP0fDL8 IHgDHB@HCH$f 1H IH\DHB@HH$f fD I/-@IGT$ L4$P0T$ 4$H HB@H;H$f. HmKI1@I,$ uID$4$LP0Hm4$tfIﺕHݾ 5HT$ HLLH5%轨O jHH!H5ɕL ͒jAH DHJH81袘^K _%HH!L AjH5uH H8H1]AXF AYHHt!H5=L AjAH HH81AZA A[LPHL@I蓕HH!H5H8}HEHIEL H'HlHHHwLGHHL萗HHtKHHE!LAH5bHH81HmHEHP0NH6fDAWAVAUATUSHHXHndH%(HD$H1HD$ HD$(HD$0HD$8H:HHnLv Lf(H~01iIH LHҖIHHPHIF‰$H9I.u IFLP0HUHH]HcH9_>L;%g!H-2%H=%HSIHHIVH5%HHLHIHHIHL=%H=V%LIHbHIVH5%HHLIIHMIH%IHI$1HHL`Lx _IHHmu HEHP0I.u IFLP0I<$u ID$LP0H%At$I|$ Mt$I̓4$MLHL&HI<$ID$LP0LxIH5%LI貐HD$ HHHkHH!HH5אUL ڍAH SH81踓X ZH HH=HE1趝HL$HdH3 %(L HX[]A\A]A^A_IFLP0 IFLP0bL4$HL$MH%H=%H賏IHwHIVH5%HHLHIHIHHu IFLP0Hc|$IHΏHHL`1HHIHHmH+HCHP0HFIH@HcH>fHF0HD$8HC(HD$0HC LHD$(HCHD$ TIH;~SHPHu!H5V%LvHD$8HIMPHl$ Lt$(Ld$0H|$82HusH8 IHfH H=E1jDH fD @HsHxH5~Ho!H8蒎Ht$DfHuHXHuH!H5ڂH8譋D3HHH!H5H8pfDHEHP0fI- HIHu(IFT$ L4$P04$T$ HHmHET$ H4$P04$T$ gHFLHD$ IH5%LMHD$(HIH5%L,HD$0HII H@IH1&3HB`HHXL蟍HUHHHCHt)H#H+HSH$HR0H$L@H!HH5H81裎H+u HCHP0>HH5֍$H <HB`HHMH蹌HoHHiHMHkH]Hm HEHP0L舥 IHDHB@HBH$f 1H8 IHjDHB@HH$/f" fD% I/-@IGT$ L4$P0T$ 4$H HB@H9H$f. HmKI1@I,$ uID$4$LP0Hm4$tfIHݾ 5HT$ HLLH5%  zHHP!H H5jL AHH81Y^ 5HH !AH5ΈjL ЅH OH8He1譋_~ AXHH!L H5jAH H"H81gAYy AZL衋HL葋I.HHT!H5b}H85}HEHIL H)H辅H}HHxL虅H|HLHHtK;HNH!LAH5HH81OHmHEHP0蠤H7AWAVAUATUSHH^H|$(dH%(H$1H!H$H H> H LnHD$hH!HD$pHD$xHHH`HXhH@pHL$0H\$HD$HtHHD$HtHHD$HtHL;-!> L5%H=P%LHH HHD$xHSH5%HHHHH\$hHrHT$xH*c HD$xHHD$xHoIEH|$h1HLhGHHD$pH^HT$hH*7 HD$hHT$xH* H50%H=9!1HD$xH\$pHD$pHD$pHHHՂHD$xHHT$pH*H!H|$xHD$pH !H9HD$ H9HL$H;=o!ŅH|$xH/u H|$xHWR0HD$x H5C%H=,%1HD$xHHoHT$xH*pHD$xD$D$ 1HT$pHtH*u H|$pHGP0HD$pHT$xHtH*u H|$xHGP0HD$xHT$hHtH*u H|$hHGP0HD$hH=b%Ղu T$t$ H=[H y貐HT$pHt$xH|$h L5%H=x%LIH<HIWH5%HHLIMI/u IGLP0JIHIE1HLLh舅IHI.u IFLP0I/u IGLP0IT$H5%HH LIMI,$u ID$LP0L-%H=%LIH;HIT$H5 %HH;LIMJI,$u ID$LP0NIHbLp虃IHH^%H5%HgLLLaIHI/ I,$ I. L;-7!H52%H=S!1HHHLIHHm H5r%1L~HHHLIHI. Hm IT$H5|%HHLHHI,$ H5%1HOIH Hmu HEHP0H[!H5$!I9HD$ I9Ht$ L;%! L豁ŅI,$u IT$LR0{IUH5%HHLIM蘁HHH]%H5%HfH5g%HL\IHI,$u ID$LP0Hmu HEHP0L;=.!Imu IELP0HD$(H5%Hx HWHHIMHD$(H5q%Hx HWHH IMH5%1L蚁IHI.u IFLP0Imu IELP0H!HLr`HjhLjpMtIHtHEMtIEIW HD$(IwHxHMtI.u IVLR0HtHmu HUHR0MtImu IELP0H5%1LπI,$Iu ID$LP0M1L;t$ L;t$L;5!LDI.Au IFLP0EHT$hH*u H|$hHGP0HD$hHT$xH*u H|$xHGP0HD$xHT$pH*u H|$pHGP0HT$Ht$MHD$pH|$0H!HHfDHHsH sHIHHrH?L zHLIL@HH(!SHyH5|H81X0ZH rH=y1މH$dH3 %(HHĘ[]A\A]A^A_fL-1!@H|$xHGP0H|$xHGP0H|$hHGP0H|$pHGP0kHD$(H5<%Hx HWHH HH HD$(H5%Hx HWHHHD$hH H5%1H9~HD$pH HT$hH*u H|$hHGP0HD$hHT$pH*u H|$pHGP0HD$pH!HHh`LxhLppHtHEMtIMtIHD$(Hx{vHtHmu HEHP0MtI/u IGLP0MtI.u IFLP0H5%1HZ}H+Iu HCHP0M L;5g!L;5-!u L;5'!I.1HL$0HtHHD$HHu HAHP0HL$HtHHD$HHu HAHP0Ht$HHHD$HHHFHP0H!HHDHH+HCHP0fDHHHjHFHH$tHL$D$ m21E1E1D$E1E1fHT$Ht$H|$0HT$hHtH*u H|$hHGP0HT$pHtH*u H|$pHGP0HT$xHtH*u H|$xHGP0MtI/u IGLP0MtI.u IFLP0MtI,$u ID$LP0HtHmu HEHP0T$t$ H n1H=6u蔅MImIELP0qH!HH]D1E1E1E1E1DLؒD$HHD$xD$ 1HfH5!%H1uHHD$xH H;D$ H;|$H;=W!yŅ\ H|$xH/u H|$xHWR0HD$xHD$(H5%Hx HWHH"IMHD$(H5p%Hx HWHH.HD$xH&H5%1HyHD$pHHT$xH*u H|$xHGP0HD$xHT$pH*u H|$pHGP0HD$pH!HLH`LPhLXpMtIMtIMtIHSH6HSHU HD$(HL\$HLT$@HpLL$8%yLL$8LT$@L\$HMt$I)uIAL\$@LLT$8P0L\$@LT$8MtI*uIBL\$8LP0L\$8MtI+u ICLP0H5z%1LXxHIHD$8HIuIFHT$8LP0HT$8H H;T$ H;T$H;!HHT$vHT$H*uHJD$HQ0D$D$D$ M2LЏIH1E1E1D$ y2D$E1@H|$xHGP0IFLP0#fID$LP0IGLP0HEHP0@LuI.u IFLP01D$D$ 1HEHP09IFLP0ID$LP0PsHB@H H$0HB@H* H$E1E1D$ 2D$iH$HHLtpH5=|%h 0fDD$D$ 1;HB@H H$JfD$D$ 1 D$D$ 1L؍IH1ID$ 2E1D$H@nIHOH5-%HurHH$ID$f.H*)DfD9D$D$ 1W1E1D$ {2E1D$HB@H H$f1D$ 2E1D$fDD$D$ 11E1D$ ~2E1D$D$D$ 11D$ 2E1D$VfD1E1D$ 2E1D$3HB@HyH$f.HB@HiH$^f.D$D$ )1D$ +1H+uZHCH1P0D$HB@HH$f.1D$ 2E1D$vfD1D$D$ -1fD1D$ 2E1D$6fDD$D$ 1;I 1D$ 2E1D$fDD$D$ 1HB@H[H$f1D$D$ 11D$ 2D$D$ 1IHD$HID$IFLP0~E1E1E1D$ 2D$@H5Y%I}LE1E1E1D$ 2E1D$D$ 1mE1E1D$ 2D$xH{HL\$HLT$@LL$8pLL$8LT$@L\$HHHL\$HLT$@LL$8oLL$8LT$@HHL\$H[HT$hHt0H*u*H|$hL\$HLT$@HGLL$8P0L\$HLT$@LL$8HD$hHT$xHt0H*u*H|$xL\$HLT$@HGLL$8P0L\$HLT$@LL$8HD$xHT$pHt0H*u*H|$pL\$HLT$@HGLL$8P0L\$HLT$@LL$8H c1L\$HH=jLT$@LL$8HD$pzHT$hHt$xH|$pvLL$8LT$@L\$HmLL$8LT$@HHL\$HsHD$p1HLL\$XHHD$pLT$PHAHD$xLL$HHHD$xHL$@HA HD$hHHD$hHA(oHL$@LL$HHILT$PL\$XHD$8HIu-IFHT$@LHL$8P0L\$XLT$PLL$HHT$@HL$8HH;T$ AH;T$DH;=!HL\$HLT$@LL$8HL$ HT$mHT$HL$ ALL$8LT$@H*L\$Hu2HBL\$@HLT$8LL$ HL$P0L\$@LT$8LL$ HL$EEdH)u(HAL\$(HLT$ LL$P0L\$(LT$ LL$HT$pH*u*H|$pL\$(LT$ HGLL$P0L\$(LT$ LL$HD$pHT$xH*u*H|$xL\$(LT$ HGLL$P0L\$(LT$ LL$HD$xHT$hH*u*H|$hL\$(LT$ HGLL$P0L\$(LT$ LL$LLLHD$h~qfL\$HHt!H5nLT$@LL$8H8hLL$8LT$@L\$HD$D$ 1H5S%H=T%1=mIHH虝I/u IGLP01E1E1D$ 2D$E1 E1E1D$ 2D$D$D$ 1E1D$ 2D$E1D$ 2E1D$I.D E1E1D$ 2D$xHB@HH$D$D$ I2m1E1D$ 2E1D$0HlHp1E1E1D$ 2D$HB@HH$/E1E1D$ 2D$LjlIE1D$ 2D$LBlIR5lHM1E1E1D$ O3E1D$jM1E1E1D$ 2D$JHB@H}H$9H5M%IxM1E1D$ 2D$E1kD$ 2I,$u ID$LP0M1E1D$E1HB@HH$LBkID$ 2M1E1E1D$ K3D$p kInjHB`H6HHL\$HLT$@LL$8hLL$8LT$@HcL\$HIMIGH`LL\$PLT$HLL$@9LL$@LT$HHIL\$PHD$8HI IGL\$PLLT$HLL$@HT$8P0L\$PLT$HLL$@HT$81E1E1D$ 2D$SLiHndLLLlD$D$ 2;LiIUL\$HLT$@LL$8fLL$8LT$@HL\$HLH5m[HQ!9HI[iINiIHtHL\$HLT$@LL$8cL\$HLT$@H[ILL$8dH*EXHT$hHt$xL\$HH|$pLT$@LL$8HL$\kHL$LL$8HD$pHD$xLT$@HD$hL\$HD$ -2LLLHL$kHL$D$H)HAHP0D$ %2D$ !2LLLZkD$D$ 2L@H!HH5cL\$PH81LT$HLL$@gILL$@LT$HL\$PHD$8HIIGL\$HLLT$@LL$8P0LL$8LT$@L\$HsfDAWAVAUIATUSHLfH|$dH%(H$1H!HDŽ$H$H%HD$H$H!H$H"I!~)IIE!H^0IE(HD$IE fHA!HI!M}H$H=%HDŽ$HDŽ$HDŽ$HDŽ$IH$HHL%%LbHH:!HH$HUH5%HH#HIH$Mz"H(HDŽ$bHH$H"ILx9dHH$HE#H!H5g%HHHH$dH$H*uH$HGP0H$LH$HDŽ$dHH$H;%I,$u ID$LP0H$H*uH$HGP0H$HDŽ$H*uH$HGP0HDŽ$I/u IGLP0L$H50%HDŽ$IWHH %LIL$M'%H5x%L^IH$H%H$H*H$H;=ζ!HDŽ$H;=!u H;=!DH/HDŽ$EH!HL``LhhLppMtI$MtIEMtIH-׾%H=%H`HO&HH$HHH5(%HHH)HH$H$H)H*uH$HGP0IWH5%HDŽ$HH)LH$H)H5%1HWbH$H)H$H* HDŽ$_H$H9H$H$HHDŽ$HP1aH$H9H$H*H!H$HDŽ$H*!H$HDŽ$HDŽ$Mt I,$!Mt Im"!Mt I.!H5%HO\IH$H99H;T!L;%! L;%! L_L$AŅ:I,$uH$HGP0HDŽ$EH5e%H=%1`HD$XH$HcNH|$XH$H*uH$HGP0H$1E1E1HDŽ$E1D$b=D$[HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ HD$XKH$HGP0L@H![@H$HGP0@IWH5%HH%LHH$H$H5%HXZHH$H%H$H*uH$HGP0H$H;=8!HDŽ$H;=!u H;=!DH/uH$HGP0HDŽ$E!IWH5U%HHQ8LHH$H7HEH; !KH;!$H@hH5H@H5H1HH$H=H$H*uH$HGP0H$H;-%HDŽ$HDŽ$<H;!RHZ\HW:HYHD$XH$H_;L%{%H=%HDŽ$LZIH 6HH$H5ٷ%LgIH$H=H$H*uH$HGP0L%%H=%HDŽ$LZIHg7HH$H5%L/gH$HCH$H*uH$HGP0L%%H=%HDŽ$LYIH9HH$H5%LfIHDH$H*uH$HGP0HDŽ$YIH$HEL`H$1H[IHEH$H*uH$HGP0H$HDŽ$H*uH$HGP0H5v%LHDŽ$eHH$HRFI,$u ID$LP0YIHIH$H$1LHDŽ$ID$+[HH$HJH$H*uH$HGP0HDŽ$I,$u ID$LP0H=%L$HDŽ$lsIH$HLH5%HdIHMH$H*uH$HGP0LHHDŽ$UAŃNI,$u ID$LP0E;H% L(hE1ɹAAHHAHD$ H1UH|$ H$H?uHGP0H+u HCHP0H$H;!HDŽ$\UH5%HLkcHD$ H$HUH5%H|$ uTIHYXH$H*uH$HGP0L;%e!HDŽ$L;%!9L;%!9LWXI,$uID$L$LP0L$IH5P%HcIHu]HHSHD$ H$H.eI,$u ID$LP0H$H;=!H;=c!CH;=Y!CWAą`H$H/uH$HGP0HDŽ$EQH=޳%pHD$ H$HfH5t%H|$ "bIHafH$H*uH$HGP0H5²%LHDŽ$aHD$ H$H!eI,$u ID$LP0H5%1HeRIH5qTH$HpL`H$1HWIHpH$H*uH$HGP0H$HDŽ$H*uH$HGP0L;%!HDŽ$L;%!RL;%!RLIU…qI,$uID$T$LP0T$M`Ht$XHVHtHNHtAEH~6IUIDf(f H\Xf(\f(\H9u\cfTcRIHsLHPH$HlI,$u ID$LP0H$H;=!AH;=!D]H;=u!]"TAąTjH$H/uH$HGP0HDŽ$EWiDH$HH$H; !HD$ :L-Ӱ%H=\%LQIH4HH$H5E%L _IH*>H$H*uH$HGP0HDŽ$RHH$H>Ht$ HH$HpPSHD$HH$H1AL-%H=%L4QHH<HH$H5 %HM^HHHIH$HOH$H*uH$HGP0H$H;=!HDŽ$H;=؞!B5H;=Ο!55{KH$Aą>QH/uH$HGP0HDŽ$E@HD$ H;v!@H5q%LVIH$HKgH5֥%HAGIH$HfH$H*uH$HGP0H$H;=!!HDŽ$H;=۝!HH;=ў!H~JAąnH$H/uH$HGP0HDŽ$E?H=Z%%dHD$H$HhH58%H|$UHD$H$HHH5N%HH:BH$H8MeDMH8H 8HOH\?L 7LOLD@HHc!ATH?H5#BH81EX<ZH 8H=>E1OfH!<@L\HH$H1E1E1D$<HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ HD$XD$S@IHHTQJcH>fHF0H$IE(H$IE HH$IEH$HH$1E1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$=D$fLI?:H={%7IH &H5|%HX)HD$ H$H*I,$u ID$LP0H5|%H!)IH*H=z%i7HD$ H$H*H5<|%H|$ (H$H+H$H*uH$HGP0HDŽ$HD$ H$H0Ht$ H$1HDŽ$H$LfHF H$HS/H$H*uH$HGP0H$HDŽ$H*uH$HGP0H$H;=p!HDŽ$AH;=o!D}H;=p!p-Aą~+H$H/uH$HGP0HDŽ$EH= y%5H$H4H5w%HT'HD$ H$H4H$H*uH$HGP0H=x%HDŽ$i5H$H05H5Qz%H&HD$ H$H4H$H*uH$HGP0H5Oz%HHDŽ$&H$H)CIH$MBID$H$1LHDŽ$H$HVH$H*uH$HGP0HDŽ$I,$u ID$LP0H5vy%H$%IHBUH$H*uH$HGP0HDŽ$H$HTL`H$1H3IHSH$H*uH$HGP0H$HDŽ$H*uH$HGP0LLHDŽ$IL$HD$ H$H-RHt$ H;5m!AH;5l!DM.H;5m!@.H+AŅ@H$H*uH$HGP0HDŽ$E0I$H$L$H/uH$HGP0HDŽ$I,$u ID$LP0L$I$H$H*uH$HGP0HDŽ$I.n0IFLMP0b@H$1E1E1D$d?D$~HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$H1E1E1D$=HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$f`H$1E1E1HD$E1HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ HD$XD$=D$]L00HH$HH$E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$=?D$yDH$1E1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$=D$f{H$1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$=D$fH$1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$3?D$yH$1E1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$=D$f HD$E1HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$6?D$yH$E1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$=D$f'DsH5?p%H|$IHr%HH$H$HEH$1LHnPHH$HC$I,$u ID$LP0H$H*uH$HGP0H$H11HDŽ$E1E1jH$)H$IY^HP0H$H*uH$HGP0HD$ H;f!HDŽ$L$HDŽ$e H5 n%HL"HD$0HUf!HD$PHD$@HD$8HD$`HD$hHD$(HD$HH$1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(D$;?D$yH$E1D$B?D$yHD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HH$1E1E1HD$E1HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$^=D$[$H$1E1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$=D$fH$1HD$E1HD$0HD$PHD$@HD$8HD$`HD$hHD$(LD$HD$?D$6D9H$E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$??D$yH$E1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$=D$f?H$1E1E1HD$E11HDŽ$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$=D$_LH麯H5e%H=)t%1HD$ H!Ll$ Lg?IEHD$HIE H$1E1E1D$>D$oHD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ H$E1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$x?D$eH$1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$=D$gH鑪H5c%H=fr%1O IH(H=I,$ H$1E1E1D$@D$HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$H2H$1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$>D$gD$3=D$Y@H$E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$z?D$0IEMHD$LLWHD$IHH$1Ld$D$BD$H$D$>1E1D$gHD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ ZL \H$E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$D?D$yH$D$?E1E1D$HD$HD$0HD$PHD$@HD$8HD$`HD$hzEH$D$?1E1D$HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HH$E1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$ @D$HD$0H\$ HD$PHD$@HD$8HD$`HD$hHD$(HD$HH=d%i!HD$H$HH5d%H|$HD$H$HRH$H*uH$HGP0H$LHDŽ$Aă(H$H(uH$HGP0HDŽ$EH5d%LFHD$H$HH5A^%H|$1HD$H$HH$H*uH$HGP0HDŽ$Imu IELP0L$HDŽ$H$1E1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(LD$HD$?D$jH$D$ @E1E1D$HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HH$E1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(D$?D$鋽H5\%H=k%1HD$ H$HP H|$ N6H$H*uH$HGP0H$1E1E1HDŽ$D$>D$qHD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ 鮼H$E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(D$?D$FLvH1H$1E1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$u>D$kH5qi%H{H$1E1E1D$>D$lHD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ )*H$1E1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$>D$n髺HD$E1HD$0HD$PHD$@HD$8HD$`HD$hHD$(D$?D$鐺DH|$ E1E1HGP0H$D$>1D$oHD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ 鷹H5X%H=Ag%1*HD$HH$H1H|$Hz2H$H*uH$HGP0H$1E1E1HDŽ$D$O@D$HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$H1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$?D$齸H$1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$>D$nID$LE1E1P0H$D$@1D$HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$H{H$D$>1E1D$nHD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ H$1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$?D$錶H$1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hD$?D$+1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hD$?D$H$E1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hD$?D$pH$1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$?D$H$1HD$D$-BD$մH$1HD$D$+BD$魴H$1E1E1HD$E1HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$=D$a+H$E1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$/@D$鷳H$E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$1@D$FH$E1HD$HD$0HD$PHD$@HD$8HD$`HD$hD$?D$H$D$/B1E1D$HD$鷲H$1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$>D$p;H$E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$4@D$ʱH$E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(D$5@D$bH$E1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(D$>@D$H$E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$:@D$醰H$1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$>D$h H$1E1E1D$@@D$HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$H锯H$D$?D$HD$HD$0HD$PHD$@HD$8HD$`HD$h8EhH$1E1E1D$>D$pHD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ 鰮H$HD$HD$0HD$PHD$@HD$8HD$`HD$hD$?D$TH$HD$HD$0HD$PHD$@HD$8HD$`HD$hD$?D$H$1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$?D$鈭H5L%H=[%1HD$ HLl$ LP&IEHD$HIEH$1E1E1D$>D$sHD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ ¬H$1HD$HD$0HD$PHD$@HD$8HD$`HD$hD$?D$dEH$1E1D$BD$:H$1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$>D$h龫H$1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$>D$hKH$1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$>D$hتH$1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$>D$peH$1E1D$BD$C1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$>D$hH$1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$>D$r\H$1E1E1D$'>D$hHD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ ݨH$1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$>D$raH$1E1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$>D$rH$D$A1E1D$HWC!HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HqH$E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$AD$H$E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$AD$鏦H$1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$AD$1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$#>D$hH$1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$>D$h5H$HD$HD$0HD$PHD$@HD$8HD$`D$?D$H$1E1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$>D$olH$1E1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(D$e@D$HD$HD$0HD$PHD$@HD$8HD$`HD$hD$?D$ϣEH5+?!H$1E1D$BD$Ht$ tH5>!H$1E1D$BD$Ht$ FH5GB%H=P%1H$H"HH$H*uH$HGP0D$?1E1HDŽ$D$uHD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ H$1E1E1D$>D$tHD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ H$D$yB1D$ݡH$1D$wBD$龡H$1E1D$iBD$霡H$D$gB1D$HD$tH$1HD$D$eBD$LH$1HD$D$cBD$$1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$>D$tԠMH$HH$H$H5D$iڟ1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$2>D$i髟H$1E1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$9>D$i1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$7>D$iH$1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$>D$r1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$>D$r鰝H$1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$>D$rH$1E1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$>D$q障H$1HD$D$MBD$rH$1HD$D$KBD$JH$D$>1E1D$rHD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ ΛH$1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$@D$[H$1E1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(D$K@D$H$1HD$E1HD$0HX6!HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$AD$tH$1E1D$`BD$RH$1E1D$^BD$0H|$ E1E1HGP0H$D$>1D$sHD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ 饙H$1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$>D$t)L@H64!HH5TH81I,$u ID$LP0HAEyH|$XrHLH$E1D$@D$HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HFLE1H$HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(D$@D$ۗLE1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$@D$铗LE1H$HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$@D$LE1E1H$HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$z@D$鄖LE1H$HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$w@D$LE1E1H$HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$u@D$陕H$1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$g@D$&L1E1H$HD$HD$0HD$PHD$@HD$8HD$`HD$(HD$HD$@D$鹔LE1H$HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(D$@D$NH$D$OB1E1D$HD$#Ll$Lt$01Lt$(L|$8Hl$@L|$LE1Hl$pH$HD$HD$(D$@D$ɓLH$1E1HD$E1HD$0HD$PHD$@HD$8HD$(HD$HD$@D$bH$1E1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$>D$sH$1E1E1D$>D$tHD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ mLl$Lt$01Lt$(L|$8Hl$@L|$LE1Hl$pH$HD$HD$(D$@D$Ll$HD$hLt$0L|$8Lt$(Hl$@LL|$IHl$pHHD$(H$D$V>1E1D$iHD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ WLl$Lt$01Lt$(L|$8Hl$@L|$LE1Hl$pH$D$@D$HD$HD$(1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$>>D$i鉐1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$<>D$iZLl$Lt$01Lt$(L|$8Hl$@L|$LE1Hl$pH$HD$HD$(D$AD$黏Ll$Lt$01Lt$(L|$8Hl$@L|$LE1Hl$pH$HD$HD$(D$AD$aLl$HLt$0L|$8Lt$(L|$Hl$@H\$HHl$pLE1H$D$AHD$HD$(D$Ll$Lt$01Lt$(L|$8Hl$@L|$H\$HHl$pLE1H$D$@HD$HD$(D$颎LLl$Lt$0E1Lt$(L|$8HD$(L|$LE1Hl$@H$Hl$pD$@HD$D$HLLl$Lt$0L|$8Lt$(L|$Hl$@LE1Hl$pH$HD$HD$(D$@D$Ll$HLt$0E1Lt$(L|$8Hl$@L|$LE1Hl$pH$HD$HD$(D$@D$鏍Ll$Lt$01Lt$(L|$8Hl$@L|$LE1Hl$pH$HD$HD$(D$@D$5Ll$Lt$01E1Lt$(L|$8HD$(L|$LE1Hl$@H$Hl$pD$@HD$D$܌LLl$Lt$0L|$8Lt$(L|$HD$(LE1Hl$@H$Hl$pD$@HD$D$酌Ll$HLt$0L|$8Lt$(L|$Hl$@LE1Hl$pH$HD$HD$(D$@D$*Ll$HLt$0L|$8Lt$(L|$Hl$@LE1Hl$pH$HD$HD$(D$@D$ϋLl$Lt$01E1Lt$(L|$8Hl$@L|$LE1Hl$pH$D$@D$HD$HD$(rLl$Lt$01Lt$(L|$8Hl$@L|$LE1Hl$pH$HD$HD$(D$@D$Ll$Lt$01E1Lt$(L|$8Hl$@L|$LE1Hl$pH$D$@D$HD$HD$(黊HB`HHH|$XHIMID$H9ID$HzIL$I,$|ID$HL$LP0HL$o|Ll$H\$x1E1Lt$0Lt$(L|$8L|$HD$(H$Hl$@Hl$pH\$PLE1HD$D$AD$龉Ll$H\$xLt$01Lt$(L|$8Hl$@L|$H\$PHl$pLE1H$D$AHD$HD$(D$ZLt$0Ll$L|$8Lt$(Hl$@L|$Hl$pHHjHH LH zH5HEH#!E1E1H81H$D$HA1D$HD$HD$(鼈H;$!sIHH$H*uH$HGP0IELHDŽ$HHD$xHLH$HLӾHWxxIm}IELP0nLl$HLt$0E1Lt$(L|$8Hl$@L|$LE1Hl$pH$HD$HD$(D$^AD$鳇LLl$Lt$0L|$8Lt$(L|$Hl$@LE1Hl$pH$D$fALd$xD$HD$HD$(SLLt$0Ll$L|$8Lt$(Hl$@L|$Hl$pH)u HAHP0KtfLLd$xH$D$nAD$1E1HD$HD$(ӆLLt$0Ll$1L|$8Lt$(Hl$@L|$Hl$pHHHLH H5:HEH!!E1H81ZH$1Ld$xD$nAD$HD$HD$(H|$`Hx+My IŹLHHHŸHHHg!H8t Ll$Ht$x1E1Lt$0Hl$pLt$(L|$8H\$@L|$LE1H$Ht$PD$AD$HD$HD$(邃Ll$Ht$x1E1Lt$0Hl$pLt$(L|$8H\$@L|$LE1H$Ht$PD$AD$HD$HD$(Lt$0Lt$(1E1Ll$Hl$pH\$(H\$xL|$8H$L|$D$AH\$PH\$(D$H\$@LE1HD$HD$(骂H$1H;=)!I酡HhpHH}H!H$H$XIHHHH|$`UI,$?ID$LP0/Ll$Ht$xHLt$0L|$8Lt$(L|$H\$@LE1Hl$pH$HD$Ht$PHD$(D$AD$鴁Ll$Ht$xLt$01Lt$(Hl$pL|$8H\$@L|$LE1H$Ht$PHD$HD$(D$AD$PLl$Ht$xLt$01Lt$(Hl$pL|$8H\$@L|$LE1H$Ht$PHD$HD$(D$AD$HPH!Lt$0E1Ll$Hl$pL|$8H H8H51Lt$(L|$Ht$x1H\$@H$LE1D$AHt$PD$HD$HD$(b1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$ ?D$u3H$1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HD$U>D$i{Ll$Ht$xLt$01Lt$(Hl$pL|$8H\$@L|$LE1H$Ht$PHD$HD$(D$AD$Ll$Ht$xLt$01Lt$(Hl$pL|$8H\$@L|$LE1H$Ht$PHD$HD$(D$AD$~H$1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$O>D$i7~1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$J>D$i}H$1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$G>D$iG}1E1HD$HD$0HD$PHD$@HD$8HD$`HD$hHD$(HD$HHD$ D$C>D$i|LLl$Lt$0L|$8Lt$(L|$Hl$@LE1Hl$pH$D$7AD$HD$HD$(x|LLl$Lt$0L|$8Lt$(L|$Hl$@LE1Hl$pH$HD$HD$(D$3AD$|LLl$Lt$0L|$8Lt$(L|$Hl$@LE1Hl$pH$HD$HD$(D$.AD${Ll$HLt$0E1Lt$(L|$8Hl$@L|$LE1Hl$pH$HD$HD$(D$+AD$d{Ll$Lt$01Lt$(L|$8Hl$@L|$LE1Hl$pH$HD$HD$(D$)AD$ {LLl$Lt$0L|$8Lt$(L|$HD$(LE1Hl$@H$Hl$pD$AHD$D$zLLl$Lt$0L|$8Lt$(L|$Hl$@LE1Hl$pH$D$AD$HD$HD$(XzLl$HLt$0L|$8Lt$(L|$Hl$@LE1Hl$pH$HD$HD$(D$AD$yLl$H\$xLt$01Lt$(L|$8Hl$@L|$H\$PHl$pLE1H$D$AHD$HD$(D$yLl$H\$xLt$01Lt$(L|$8Hl$@L|$H\$PHl$pLE1H$D$AHD$HD$(D$5yLl$H\$xLt$01Lt$(L|$8Hl$@L|$H\$PHl$pLE1H$D$AHD$HD$(D$xLtjjHtMHH!H5˳H8螼HD$XHIHtH|$XDHIPH AWAHAVAUATUSH(dH%(H$1H\$HHl$LHD$HD$ HHD$($HºHH1D$L8D$HuD$N8D$JLd$P1IHLLzHļ1LuɆAE11L-@HT$Ht H*HT$ Ht H*VHT$(Ht H**Ht H+ Mt I.H=$%H=кLDH=$%H/qH$%H$dH3%(2[H([]A\A]A^A_D1詼HH_$%H1H=б舷HH6$%HA11H5%H=+舸HH&$%H5HH)HH#%HWHH=薸HH#%HWH=#%HH5˸譸H-~$HeHn$*@#HEHH8H(H+H2{ H{ {"uHCHp聶HEHGP0@IFLP0H=.#%B軻HdH!H5H8EHCHP0H|$(HGP0H|$ HGP0H|$HGP0mAE11L-{6@E1ˆL-cAfDHC1HpYHE1艼HHW%HVlH5%H RH%H8H%HH%HHH%H H%HλHg%Htr踻HI%Ht\p袻H+%HtFHǀ芻H %Ht.tH%Ht^H%HubfAE11L-@E1L-ˮAfDE1ʆL-A`fDHHM%Ht11H=xH)%Hh11H=~XH%HH11H=i8H%H(HlH%H 11H=9H%H11H=ܴHe%H11H= 輴H=%HH= !t"H%H=%H5uSH=%!H%HYTH=%H%H=TH=~%H%H!TH=%H TH=U%H%HSH=Q%Hu%HSH=e%HQ%HSH=%dH-%HSH=-%HHSH5%1,H]%HRH !1HHHH)%HQHHH޿1۹H%HQHHH޿1趹H%HQHHH޿1葹H%HQHHH޿1lHu%H\QH5u%1IHJ%H9QHHH޿1$H %HQHHH޿1H%HPHHH޿1ڸH%HPH5%1跸H%HPHHH޿1蒸H[%HPHHH޿1mH.%H]PHHH޿1HH%H8PH5Q%1%H%HPHHH޿1H%HOHHH޿1۷H|%HOHHH޿1趷HO%HOHHH޿1葷H"%HOHHH޿1lH %H\OH5u%1IH %H9OHHH޿1$H %HOHHH޿1Hp %HNHHH޿1ڶHC %HNH5%1跶H %HNHHH޿1蒶H %HNHHH޿1mH %H]NHHH޿1HH %H8NH5Q%1%Hf %HNHHH޿1H9 %HMHHH޿1۵H %HMHHH޿1趵H %HMHHH޿1葵H %HMH5%1nH %H^MHHH޿1IHZ %H9MHHH޿1$H- %HMH5 %1H %HLH5%1޴H %HLHHH޿1蹴H %HLH5 %1薴H %HLH5%1sHT %HcLH5$%1PH) %H@LHHH޿1+H %HLHHH޿1H %HKH5%1H %HKH5, %H=5 %HH %HKH5 %H= %HH %HKH5%1tH- %HdKHHH޿1OH %H?KH5%1,H%HKHHH޿1H%HJHHH޿1H{%HJH5+%1迲HP%HJH5%1蜲H%%HJH5%1yH%HiJH5%1VH%HFJH5%13H%H#JH5T%1Hy%HJH5)%1HN%HIH5%1ʱH#%HIH5%1觱H%HIH5%1脱H%HtIH5 %1aH%HQIH5%1>Hw%H.IH5/%1HL%H IH5 %1H!%HHH5%1հH%HHH5%1貰H%HHH5%1菰H%HHH58%1lHm%H\HH5=%1IHB%H9HH5%1&H%HHH5%1H%HGH5%1H%HGH5%1软H%HGH5^%1蚯Hk%HGH5;%1wH@%HgGH5P%1TH%HDGH5%11H%H!GH5 %1H%HFH5%1H%HFH5|%1ȮHi%HFH5a%1襮H>%HFH56%1肮H%HrFH5 %1_H%HOFH5%1H5 %1ڦH$H>H5 %1跦H$H>H5 %1蔦HU$H>H5m %1qH*$Ha>H5B %1NH$H>>H5 %1+H$H>H5%1H$H=H5%1H~$H=H5%1¥HS$H=H5%1蟥H($H=H5X%1|H$Hl=H5-%1YH$HI=H5%16H$H&=H5%1H|$H=H5%1HQ$H<H5%1ͤH&$H<H5v%1誤H$H<H5K%1臤H$Hw<H5 %1dH$HT<H5%1AHz$H1<H5%1HO$H<H5%1H$$H;H5|%1أH$H;H5Q%1赣H$H;H5&%1蒣H$H;HHHԢH}$Hd;H5%1QHZ$HA;H5%1.H/$H;HHHpH;HHڿ1H$H:H5N%1ҢH$H:HHH޿1譢H$H:HHH޿1舢Hi$Hx:HHH޿1cH<$HS:HHH޿1>H$H.:HHH޿1H$H :ASL $ 15$L$H M$5$H$5 $H5$5$5W$5!$5$计H@H9L %11Ҿ L%APj5$5%AQAQPAQiH@H\9ARL $ 15$L$H $5b$Hk$5]$H5n$5$5$5t$5$H@H8L -%11Ҿ L%APj85$50%AQAQPAQ輚H@H8AQLn$ 15Q$L :$H $5$H$5$H5$5+$5$5$5)$TH@HG8L %11Ҿ Lh%APjk5i$5%AQAQPAQH@H8APL $ 15$L$H F$5$H$5$H5$5~$5P$5$5|$觟H@H7L %11Ҿ L%APh5$5%AQAQPAQ_H@HR7WL $1 5$L$H $5Y$Hb$5T$H5e$5$5$5k$5$H@H6L $%11Ҿ L %APh5$5$%AQAQPAQ谘H@H6VL C$ 15F$LO$H $5$H$5$H5$5 $5$5$5$IH@H<6L u%11Ҿ L]%APh5#$5u%AQAQPAQH@H5QL $ 15$L$H 9$5$H$5$H5$5q$5C$5 $5o$蚝H@H5L %11Ҿ L%APh75$5$AQAQPAQRH@HE5RL $ 15$L$H $5L$HU$5G$H5X$5$5$5^$5$H@H4L %11Ҿ L%APhj5$5$AQAQPAQ裖H@H4PL 6$1 59$LB$H $5$H$5$H5$5$5$5$5$$蹀9HT$(H*u H|$(HGP0HD$(H=$EHHD$(H,9H5$HŊIH8HT$(H*u H|$(HGP0H5$H=$LHD$(#8I.u IFLP0H=$还IH`8H5D$HDHHD$(H)8I.u IFLP0HT$(H5$H=0$7HT$(H*u H|$(HGP0HD$(H=$7HHD$(H7H5$H跉IHR7HT$(H*u H|$(HGP0H5$H=$LHD$(6I.u IFLP0H=~$豗IH6H5$H6HHD$(H6I.u IFLP0HT$(H5$H="$~76HT$(H*u H|$(HGP0HD$(H=$)HHD$(H5H5$H詈IH5HT$(H*u H|$(HGP0H5$H=$LHD$(~U5I.u IFLP0H=p$裖IH5H5$H(HHD$(H4I.u IFLP0HT$(H5k$H=$}4HT$(H*u H|$(HGP0HD$(H=$HHD$(H:4H5$H蛇IH4HT$(H*u H|$(HGP0H5$H=$LHD$(|3I.u IFLP0H=b$蕕IHn3H5:$HHHD$(H73I.u IFLP0HT$(H5$H=$|2HT$(H*u H|$(HGP0HD$(H=$ HHD$(H2H5$H荆IH`2HT$(H*u H|$(HGP0H5$H=|$LHD$({ 2I.u IFLP0H=T$臔IH1H5|$H HHD$(H1I.u IFLP0HT$(H5G$H=$s{E1HT$(H*u H|$(HGP0HD$(H=$HHD$(H0H5'$HIH0HT$(H*u H|$(HGP0H5$H=n$LHD$(zc0I.u IFLP0H=F$yIH"0H5$HHHD$(H/I.u IFLP0HT$(H5$H=$ez/HT$(H*u H|$(HGP0HD$(H=$HHD$(HH/H5$HqIH/HT$(H*u H|$(HGP0H5g$H=`$LHD$(y.I.u IFLP0H=8$kIH|.H5$HHHD$(HE.I.u IFLP0HT$(H5$H=$Wy-HT$(H*u H|$(HGP0HD$(H=$HHD$(H-H5s$HcIHn-HT$(H*u H|$(HGP0H5A$H=R$LHD$(x-I.u IFLP0H=*$]IH,H5j$HHHD$(H,I.u IFLP0HT$(H55$H=$IxS,HT$(H*u H|$(HGP0HD$(H=$ՐHHD$(H+H5$HUIH+HT$(H*u H|$(HGP0H5$H=D$LHD$(wq+I.u IFLP0H=$OIH0+H5<$HԁHHD$(H*I.u IFLP0HT$(H5$H=$;w*HT$(H*u H|$(HGP0HD$(H=$ǏHHD$(HV*H5$HGIH"*HT$(H*u H|$(HGP0H5U$H=6$LHD$(v)I.u IFLP0H=$AIH)H5>$HƀHHD$(HS)I.u IFLP0HT$(H5 $H=$-v)HT$(H*u H|$(HGP0HD$(H=$蹎HHD$(H(H5Y$H9IH|(HT$(H*u H|$(HGP0H5'$H=($LHD$(u%(I.u IFLP0H=$3IH'H5$HHHD$(H'I.u IFLP0HT$(H5$H=$ua'HT$(H*u H|$(HGP0HD$(H=x$諍HHD$(H 'H5k$H+IH&HT$(H*u H|$(HGP0H59$H=$LHD$(t&I.u IFLP0H=$%IH>&H5$H~HHD$(H&I.u IFLP0HT$(H5U$H=$t%HT$(H*u H|$(HGP0HD$(H=j$蝌HHD$(Hd%H5$H~IH0%HT$(H*u H|$(HGP0H5k$H= $LHD$({s$I.u IFLP0H=$IH$H5l$H}HHD$(Ha$I.u IFLP0HT$(H57$H=$s$HT$(H*u H|$(HGP0HD$(H=\$菋HHD$(H#H5o$H}IH#HT$(H*u H|$(HGP0H5=$H=$LHD$(mr3#I.u IFLP0H=$ IH"H5N$H|HHD$(H"I.u IFLP0HT$(H5$H=z$qo"HT$(H*u H|$(HGP0HD$(H=N$聊HHD$(H"H5Q$H|IH!HT$(H*u H|$(HGP0H5$H=$LHD$(_q!I.u IFLP0H=$IHL!H5$H{HHD$(H!I.u IFLP0HT$(H5$H=l$p HT$(H*u H|$(HGP0HD$(H=@$sHHD$(Hr H53$HzIH> HT$(H*u H|$(HGP0H5$H=$LHD$(QpI.u IFLP0H=$IHH5$HrzHHD$(HoI.u IFLP0HT$(H5M$H=^$o#HT$(H*u H|$(HGP0HD$(H=2$eHHD$(HH5$HyIHHT$(H*u H|$(HGP0H5$H=$LHD$(CoAI.u IFLP0H=$߇IHH5T$HdyHHD$(HI.u IFLP0HT$(H5$H=P$n}HT$(H*u H|$(HGP0HD$(H=$$WHHD$(H&H5$HxIHHT$(H*u H|$(HGP0H5$H=$LHD$(5nI.u IFLP0H=$цIHZH5$HVxHHD$(H#I.u IFLP0HT$(H5$H=B$mHT$(H*u H|$(HGP0HD$(H=$IHHD$(HH5)$HwIHLHT$(H*u H|$(HGP0H5$H=$LHD$('mI.u IFLP0H=$ÅIHH5$HHwHHD$(H}I.u IFLP0HT$(H5k$H=4$l HT$(H*u H|$(HGP0HD$(kHHD$(HH$H5$H[lH$H5$H|$(;l~H|$H5}$H|$(lHHL$H5M$H|$(kH$H5$H|$(kH$H5$H|$(kH$H5$H|$(kpH$H5$H|$({k:H\$H5]$H|$([kH,$H5-$H|$(;kH$H5$H|$(kH$H5$H|$(jbH$H5$H|$(j,Hl$H5m$H|$(jH<$H5=$H|$(jH $H5 $H|$({jH$H5$H|$([jTH$H5$H|$(;jH|$H5}$H|$(jHL$H5M$H|$(iH$H5$H|$(i|H$H5$H|$(iFH$H5$H|$(iH$H5$H|$({iH\$H5]$H|$([iH,$H5-$H|$(;inH$H5$H|$(i8H$H5$H|$(hH$H5$H|$(h Hl$H5m$H|$(h H<$H5=$H|$(h` H $H5 $H|$({hH$H5$H|$([hH$H5$H|$(;hH|$H5}$H|$(hVHL$H5M$H|$(g H$H5$H|$(gH$H5$H|$(gH$H5$H|$(g~H$H5$H|$({gPH\$H5]$H|$([gH,$H5-$H|$(;gH$H5$H|$(gHT$(H5$H=$fHT$(H*H|$(HGP0饧AE11L-3Z@E1L-ZAЦfDE1L-YA鰦fDAQE11L-Y鎦@AE11L-YnHH AQE11L-YEE1L-sYA(fDE1 L-SYAQfDAWE11L-`@ AQE11L- Yƥ@AE11L-X馥@HCH߽ E1L-XAQ1P0|fAYE11L-_^@A[E11L-s_>AaE11L-W_"AE11L-Y&A8E11L-Y2AkE11L-YΤL-YAE11Ƥ$L-zYA8>AE11L-[Y邤0L-JYAk벽JAE11L-+YRVAE11L-Y6<L-XAc0_bA7E11L-XHL-XA+TL-XAnAjE11L-X鴣xL-|XA`L-eXA7lL-NXAjAE11L-VSAE11L-|V7zAE11L-WH: H5fH8[^H=$O_ALLH~fHT$0HtH*u H|$0HGP0HT$8HtH*u H|$8HGP0HT$@HtH*u H|$@HGP0DH \E1H=]A1lL-UPH=j]H h\lHT$@Ht$8H|$0gH^H59$H=$1aHHH/H+udHCHAP0H H5dH8 ]H+HCHP0H H5\H8\zAAyAiL-TE119L-mTE11#L-WTE11 L-ATE11L-+TE11ߌL-TE11ˠތL-SE11鵠݌L-SE11韠L-SE11鉠L-SE11sL-SE11]L-SE11GH~ H57dH81e`% H5cHM H81;` H5PcH' H81`H H5ZH8[L-RAL-RAL-RAH H5cH81_XL-RE11GALE11L-pR+HD$HT$ HtH*u H|$ HGP0HD$ H=$B[H=ZH R iHT$(Ht$H|$ \dy WHHSHG$HHHCH5$HH=3$f{IHH+u HCHP0H5$LvHHH5$H=q$H]H+u HCHP0I.u IFLP0HT$ H*u H|$ HGP0HD$ HT$H*u H|$HGP0HD$HT$(H*u H|$(HGP0Ht$LLHD$(1aAHt$LLL-P a_A׽AE1A뺽߇AE11AE11뛽AE11L-?PmAHH\$Ht0HL-PE11ۜcADE11L-O鵜E1L-OΜXAG몽VL-OAGLADE11L-OfAL-OAF?AFP5ADE11L-hO#*AE$(L-GOAE@E1L--OADA6E11L- OƛE1L-NA6鬛ɇHT$HsH*iH|$HGP0XLJNćƽ܌L-NE11WیL-NE11AڌL-uNE11+ٌL-_NE11،L-INE11׌L-3NE11֌L-NE11ӚՌL-NE11齚ԌL-ME11駚ӌL-ME11鑚ҌL-ME11{ьL-ME11eЌL-ME11OόL-ME119ΌL-mME11#͌L-WME11 ̌L-AME11ˌL-+ME11ʌL-ME11˙ɌL-LE11鵙ȌL-LE11韙njL-LE11鉙ƌL-LE11sŌL-LE11]ČL-LE11GÌL-{LE111ŒL-eLE11L-OLE11L-9LE11L-#LE11٘L- LE11ØE1L-K鯘2L-KA1閘1۽/L-KA}E1-L-KAc#AE11L-KG L-{KA01۽L-bKAL-KKA11۽L-0KAE1L-KA˗AE11L-J鯗L-JA阗1۽L-JAL-JA1f1۽L-JAME1L-~JA3E1ډL-dJA?E1͉L-JJAb E1L-0JA E1L-JA ˖E1L-IA 鱖E1L-IA 闖E1L-IA }E1L-IA cE1L-IA IE1L-zIA /E1xL-`IAhE1kL-FIAE1^L-,IA E1YL-IA ǕE1LL-HA魕E1GL-HA铕$L-HA~1z1۽ L-HA~aL-HA~J1۽L-|HA~1L-eHA~1۽L-LHA~L-5HA~1۽ L-HA~єE1 L-HA~鷔L-GA~E1L-GA~醔A~E1L-GA~\A~]E1L-}GA~2ADE11L-[GADE11L-?GAML-GAMֈADE11L-F鷓ˈL-FALɈALADE11L-FtAKuL-FAKADE11L-vF1L-eFAJ^AJADE11L-3FAIL-FAI zADE11L-E髒oL-EAHL-EAL}1۽L-EALdL-EAK1K1۽L-}EAK2E1L-cEAKAIE11L-AEL-0EAI1۽L-EAȊL-EAH1鳑1۽L-DAH隑E1L-DAH逑{AGE11L-DdxL-DAGM1۽vL-DAG4lL-hDAE11۽iL-MDAEE1gL-3DAE]ADE11L-D̐ZL-DAD鵐1۽XL-CAD霐NL-CAC1郐1۽KL-CACjE1IL-CACP?ABE11L-yC4<L-hCAB1۽:L-OCAB0L-8CAA11۽-L-CAAҏE1+L-CAA鸏!A@E11L-B霏L-BA@酏1۽L-BA@lL-BA?1S1۽L-BA?:E1 L-kBA? A=E11L-IBL-8BA=1۽L-BA=ԎL-BA<1黎1۽L-AA<颎E1L-AA<鈎A;E11L-AlL-AA;U1۽L-AA;<֋L-pAA:1#1۽ӋL-UAA: E1ыL-;AA:NjA9E11L-AԍċL-AA9齍1۽‹L-@A9餍L-@A81鋍1۽L-@A8rE1L-@A8XA7E11L-@<L-p@A7%1۽L-W@A7 L-@@A611۽L-%@A6ڌE1L- @A6A5E11L-?餌L-?A5鍌1۽L-?A5t|L-?A41[1۽yL-?A4BE1wL-s?A4(mA3E11L-Q? jL-@?A31۽hL-'?A3܋^L-?A21Ë1۽[L->A2骋E1YL->A2鐋OA1E11L->tLL->A1]1۽JL->A1D@L-x>A01+1۽=L-]>A0E1;L-C>A01A/E11L-!>܊.L->A/Ŋ1۽,L-=A/鬊"L-=A.1铊1۽L-=A.zE1L-=A.`A-E11L-=DL-x=A--1۽L-_=A-L-H=A,11۽L--=A,E1L-=A,ȉA+E11L-<鬉L-<A+镉1۽L-<A+|L-<A*1c1۽L-<A*JE1L-{<A*0׊A)E11L-Y<ԊL-H<A)1۽ҊL-/<A)ȊL-<A(1ˈ1۽ŊL-;A(鲈E1ÊL-;A(阈A'E11L-;|L-;A'e1۽L-;A'LL-;A&131۽L-e;A&E1L-K;A&A%E11L-);L-;A%͇1۽L-:A%鴇L-:A$1雇1۽L-:A$邇E1L-:A$h}A#E11L-:LzL-:A#51۽xL-g:A#nL-P:A"11۽kL-5:A"E1iL-:A"І_A!E11L-9鴆\L-9A!靆1۽ZL-9A!鄆PL-9A 1k1۽ML-9A RE1KL-9A 8AAE11L-a9>L-P9A1۽<L-79AfDHHLHH1Hiel HHquHdžpHdždžfHcP=pt=HHH H1HH%V,H1HH%H1HHH1HLHHHqH%H HƃHHH3` %߰H1HAI9uH` @HH H%H HHHH3J%߰H1HH9uHxH%H HƒHHH3` %߰H1кHx1@f.AWAVAUATAAUA SDA HDD AAD AAA H~1LʼnAIL<H?D!9rDIAEM9uH[]A\A]A^A_H~Hf9HH9uAWAVAUATAUSHfAAfAA DfD AfAD AfAA H~OL,QLH1@tAD1D!fA9sH"?AD!fA9rںDHfCI9uH[]A\A]A^A_H~HQffD!HH9uH[]A\A]A^A_@AWAVAUATAUSH@AAAD AAD AAA H~aL,LH1.H`>AD!A8sMADD!A8stADD!A8rDHCL9uH[]A\A]A^A_DDHCL9uHH~fD!HH9uH[]A\A]A^A_D@tWATL$ULSH1H2#HL9tuH=#HL9u[]A\fH~H@9HH9ufUHSH.=HH#=H HH []DHAWAVAUATIIUI SLHI HLHL IIL III LH I H~ELHIIL<DH9w6fDHHHÐf.1HATIIUHI SHLHI LHL IIL III LH I ĸH9wfH;L!H9r[]A\H=L!H9sH=L!H9rfDDf.UHSH.;HH#;HffH*HYLH*XYLH[]@f.AUIATUHSHHHvFHFHLdfDHH:HˆCHSHHHSCI9uAMuH[]A\A]DHI]:HCHI9uH[]A\A]fATIH5KUHStGH=K{;HHtGHLHp7HH81[]A\fH=K4;HHu[]A\fAT1ҾUSHH dH%(HD$1%;uqH HHǃpHHHǃǃ f.HHHWH9uHt$dH34%(-H []A\1H817HcHBHH)HH H1HHHH1HHhH H)H$HBHH)HH H1HHHH1HHPH H)HL$IHAHIH)HH H1HHHH1HHH H)H1HI1L1H1HI6HHPHH)HH H1HHHH1HHH H)I1HL1HH1&<7ATIUHSHHf9uH[]A\fLHH߉D$ >6D$ H[]A\ÐSHH fDH:HXf(\HT$:T$Xf(Yf(\ Hf(YXf/Hsff.z tf.f(L$T$\$e:\$fT$YHL$^f.QwGǃYYH f([DLJHLJ\$L$T$[:\$L$T$UA+SH+ fDHLHL1HielDLHouHpApLLJpLM1E1fLHHHLL1NHi fI3MIDIIHo~LxLL9LNIuo @LDLH4HL1HieX]H3)HHHpuHxHHu[]HLJHHLJUf(SH(-nGf/f(f\H,H*Xf(>FHG 'GYHP^ GfHYXH9uf(d$L$T$7T$L$5Fd$^f(\Ff/YX FX\rBH~=f\EL$Hf(T$o7L$H9T$\~H(f([]f(1f.HL$$4L$YX$H@H6 D\f(6fW6GHÐHD$2YD$HfHL$$x6L$YX$H@f.tD:SHH0=^DD$f/fDH 6HD$r2 *Dl$T$\f/r4 DD$f(^96\$f/rH0[D$ CL$\^D$5t$L$f(f(T$Y\f( C^5T$\$ \f/$H0[fD|$\=jDjDY|$(ff.Q=&C^|$@H2ff(D$YXBf/sf(HL$YYT$4L$C=Bf(YYY\f/wZL$ 4D$D$4L$ =CnB\T$YXYT$(YXf/L$.D$(YD$H0[i0L$4L$HL$/L$HY@f.SHH0AD$ f/L$(f/@H3HD$r3 A^L$ D$D$3 kA^L$(D$D$3XD$=FAf/rf/`BvV\$H0[^f(fD$ H.HD$D$(.L$H0[X^f(fDD$2f(D$^L$ L$2L$f(^T$(T$ f(_\\$f(L$1\$T$ D$\f(d1XD$Y2L$H0[\f(A1HY@A-HXfSHH $D$41 $Hf(Yf($1\$$H[Y^f(fAWfAVH*AUIATUHSHD$xt H9 w?l$xLDžf(\l$Hf/t$@" \$Hl$@T$YXL$f($d2L$$YL$@L,fT$Lf(L$`Qf. Y ?->5?f(L$@Y ?\f(f(fTf.!f-u?I*f(Xl$ Xf(L$X?f($\Xf(L$p U?t$0^K?XL$HYfD(D$8f(\f(\f(^YXYf(Y|$@\f(L$X^Yf(XYfA(AXXfA(^L$hYT$D^Xf(D$PfA(XD$H.L$HY $. $f/L$f(Df/L$ |$d$8fI*\Yf(^f(<XT$(XD$0\X\$ fT<^\f/ $V/ $T$(H,IM)LH?HL1H)H~#\$`Y\$ fH*\f/IEfd$H^d$@H*YL9Ff/I)t$xf/t$ IGHH[]A\A]A^A_@f/L$PL$($-^D$XXD$0.H,HeL$(\L$$YH;YL$XDID$H9Tf.ff(H*H^f(\YH9}DL$($,l$p^D$h\f(7.$L$(H,I9\L$PY:YL$hPHCL9ff(H*H^f(\^L9~Df(^;t$`LIX;f(XYHX;^^XT$ YfH*^T$($f(+$T$(f(f(\f/Xl$(f/HCfEfML*ID$fM)H*fEIGL*IEH)H*fE(D$EYf(f($A^fE(D$YEYfD(,$DYD$$D$D$*D$$D$fA(^<$f(*\$@4$D$Yt$H$AYf(^*= :D9$l$(fA(f(59D$D9^D$D$D$D$\f(f(^\f(%9^f(\f($^f(t9fD(D\fI*XT$ Y$D^$Y$XfI*YfA(Xf(A^E^\f(f(A^DXfA(A^\f(f(A^E^\f(f(A^\f(f(A\\A^f(f(A^A^\f(f(A^\A^\f(f(A^\A^\f(A^\^$A^A^AXA^XXf/$D$Y\f(X)H,f.H,ffUH*f(f(fT\f(fV@f(t$H\l$@f.rlL|$Yl$H-6$t$@|$0Yl$ |$p|$8|$XL$`|$h|$|$P|$f(\$ $'T$\$ $5f.ATIUHSH@D$t H9YT$=4fLDžI*\f(L$|$`&L$YL$ K%T$L$ \$D$YfYX4f.QY%5Xf/;H,HH%d$1f/f(w>[Lf\H)HH*YT$YfH*YT$^f/vHPH9}HV%L$1f/wH@[]A\f.H\$\$=f(T$8d$0L$(\$ {%d$0Y%4T$8L$(\$ Xf/f(T$ >%T$ H,fD3fH*f/r%Y14f/r N"fD#X2SH\Yf(3f/r"H)H[Dc#H)H[Ðf.UHS1HfWY4" 1D$@HH $# $Yf/L$wHH[]@ATf(QUHSHPD$ff.4$>D$E1r#D$0$Y3X3f(D$Y3f(\ 3\5)3f( 3\%2^ 3f(d$8Xl$(X2D$@2^\L$HfH"Hf(\1$"$ 1D$f(fT0\D$(^ $XD$YXD$Xu2# $\$f/ e2H,r|$Hf/H]=E2f/v f/Ef(L$ "$D$@!L$ t$8D$D$Y^X!$XT$HCfH*YL$0\f\L$H*f./AEĄu1f.y1D„uL$$L$$\f/~HPH[]A\f(!@f/0sf.B0zu1ff.Sf(HH .f/vT\L$f(HD$L$ff(f.QwfXf(YXD$H [Y /T$f(ifT$H HH[H*XvfDLeD$f(T$ \$T$tDf.SHH $f(D$$$Hf(Yf( $\$ $H[Y^f(D-SH\^f(H[vfDSHH_HD$QL$H[^f(f.SHH D$L$HY .D$f(L$L$ff(f.Qw"f.L$YQw5f(H ^[D$f(T$$f\$T$f(T$L$T$L$Df.SHH@D$8f,L$ f/^.t$ f/^,D$^Xft$D$0/fDf(^f(XD$L$\f/D$s}HY-r\$0Hf(YXXL$f(L$ ^\d$(YL$PL$Z-\Y\f/T$ZH"D$D$( 9,f/L$vfWy-T$8 K-Xf(fT++T$X-|$T$\,f/vfW&-H@[l$ ,=*Y|$Yfl$Xf.Qw{XL$t$f(Xf.Qws\t$ f(f(X^f(YXXL$^L$0dX\*Y7,H@[L$~L$oL$(T$bL$(T$kHD$^D$\)HDHD$ )^L$HfDHD$fW+P H)f(^L$H\f(mf.HL$$ *f/vXYD$X$HÐ *\\f(YD$$$H\f(Df.H $D$h(\f(sfW*f $T$HY\f(f.HL$$ (\^L$YX$HDf.HCHf.H$ '\f(Y1(ff.Qw$HYL$L$ff(f(SHXf(H ^L$\$,$:\$L$Y ^)f(YYYf(YXff.QwW\Y$H\$X$\$$f(f(X^f/s Y^f(H f([\$T$d$\$T$d${UHSH(\[&f($B(f(ؐH\$HD$%&\d$D$-&^,$f(f(6af $=%H,%H*^T$XT$YT$f(\ %\$^Yf(\ %^f/;H2H(H[]HP%D$\$L$$f/vf(fYHXf/wHfH$$\f($\$D$f(L$^f(HH,f/%r DCAWIAVIAUIATIUHSH)HH(H9ffH*t$f/l$I/L$HDHf/L$vKLL$fL$H*f(^XNL$H,fH*\H9uD$\H,M9}I)LH([]A\A]A^A_ffH*l$f/|$@D$\H,D$\H,랐f.AWHffAVIffAUH*ATUHSHHXH9Ht$8HNHH9H*IHHT$@H4$LMI)I9HL$0LOH*$I*L)f(\$ "^f(d$HY\X#D$fH*HCYYfH*Y^Xr#Qd$ff.H$MefHSD$Yt$Xt$LxI*D$fI*YfH*^fH,fHSH*f.!Eф9f.#Dф#.f(LfH)H*f.!Eф f.p#Dф T$(T$(f(I)fXʹI*f.8!Eфf.#DфL$(L$(IXfM)J3H*f. E„Pf."D„:L$(/L$(X L$(L9,$XT$HD$Y"XD$% -!f(f(fTf.v7H,ffUH*f(f(=* fT\f(fV]T$HH$\!YD$f^$XD$f/wf/D$s;H,fHCH*f.E„f.!D„f(LfH)H*f.cE„f.E!D„T$ T$ f(MfXʺI)ID$H*f.E„'f. D„L$ VL$ J3XfH*f.E„f. D„L$ L$ X4$T$( \\Y\f/s;f($\Yf/3f($ $Xf/HD$8H9D$@ILH)L9l$0HOHXH[]A\A]A^A_DfZfff(XT$ Dfffdff.H ~ ; f.f(f(H8\\T$L$D$(f(\$^l$ 4$4$\$L$T$f/r3l$ fd$(YYf.QwHXH8f(@f(\ x\fYYf.Qw*\H8f(d$$d$$f(T$ $T$ $SHH -D$\f( D$H f/D$$H YD$  $\f(Yf/rXf(T$ T$$f(u  $^dXH,HjH [f/ʸrHHlongan integer is requirednumpy/random/mtrand/mtrand.c%s (%s:%d)Missing type objectnumpy%s.%s is not a type object%s() keywords must be stringsname '%s' is not definedcannot import name %.230smtrand.pyxmtrand.RandomState.__reduce__mtrand.RandomState.randnmtrand.RandomState.randat leastat mostmtrand.RandomState.__init__exactlymtrand._shape_from_sizerandom_integersmtrand.disc0_arraymtrand.RandomState.tomaxintmtrand.discd_array_scmtrand.cont0_arraystandard_cauchystandard_exponentialstandard_normalrandom_samplemtrand.cont1_array_scmtrand.cont2_array_scmtrand.cont3_array_scrandint_helpers.pximtrand._rand_int8mtrand._rand_boolmtrand._rand_uint8mtrand._rand_uint32mtrand._rand_uint16mtrand._rand_uint64mtrand.RandomState.get_statefloat divisionmtrand.RandomState.dirichletmtrand.discnp_arraymtrand.discdd_arraymtrand.discnmN_arraymtrand.discd_arraymtrand.RandomState.zipfmtrand.cont1_arraymtrand.RandomState.rayleighmtrand.RandomState.powermtrand.RandomState.weibullmtrand.RandomState.paretomtrand.RandomState.standard_tmtrand.RandomState.chisquarestandard_gammamtrand.RandomState.set_statemtrand.cont2_arraymtrand.RandomState.lognormalmtrand.RandomState.logisticmtrand.RandomState.gumbelmtrand.RandomState.laplacemtrand.RandomState.vonmisesmtrand.RandomState.normalmtrand.RandomState.uniformmtrand.cont3_arraymtrand.RandomState.geometricmtrand.RandomState.logseriesmtrand.RandomState.poissonmultinomialmtrand.RandomState.betanoncentral_chisquaremtrand.RandomState.fmtrand.RandomState.waldmtrand.RandomState.gammamtrand.RandomState.bytesmtrand.RandomState.triangularhypergeometricmtrand.discnmN_array_scnoncentral_fmtrand.RandomState.shufflemultivariate_normalnegative_binomialmtrand.discdd_array_scmtrand.RandomState.randintmtrand.RandomState.binomialmtrand.discnp_array_scmtrand._rand_int64mtrand._rand_int16mtrand._rand_int32mtrand.RandomState.seedmtrand.RandomState.choiceassignmentnumpy.pxd%d.%d%s__builtin____builtins__214748364842949672954294967296-922337203685477580818446744073709551616__name__ndarrayflatiterbroadcast__pyx_vtable__numpy.core.multiarray_ARRAY_API_ARRAY_API not found_ARRAY_API is NULL pointermtrand.import_arrayinit mtranddtypemtrand.RandomState__getstate____setstate__permutation__%s__ returned non-%s (type %.200s)Cannot convert %.200s to %.200s%s.%s size changed, may indicate binary incompatibility%s.%s has the wrong size, try recompiling%s() got an unexpected keyword argument '%s'%s() got multiple values for keyword argument '%s''%.200s' object is unsliceablemtrand.RandomState.__getstate__mtrand.RandomState.__setstate__too many values to unpack (expected %zd)%s() takes %s %zd positional argument%s (%zd given)raise: arg 3 must be a traceback or Noneinstance exception may not have a separate valueraise: exception class must be a subclass of BaseExceptionmtrand.RandomState.permutationmtrand.RandomState.random_integersmtrand.RandomState.standard_cauchymtrand.RandomState.standard_exponentialmtrand.RandomState.standard_normalmtrand.RandomState.random_samplecan't convert negative value to unsigned charvalue too large to convert to unsigned charvalue too large to convert to signed charcan't convert negative value to unsigned intvalue too large to convert to unsigned intcan't convert negative value to unsigned shortvalue too large to convert to unsigned shortcan't convert negative value to unsigned longcan't convert negative value to unsigned PY_LONG_LONGmtrand.RandomState.standard_gammamtrand.RandomState.exponentialneed more than %zd value%s to unpackvalue too large to convert to intmtrand.RandomState.multinomialmtrand.RandomState.noncentral_chisquaremtrand.RandomState.hypergeometricmtrand.RandomState.noncentral_fmtrand.RandomState.multivariate_normalmtrand.RandomState.negative_binomialvalue too large to convert to signed shortvalue too large to convert to signed int'%.200s' object does not support slice %scompiletime version %s of module '%.100s' does not match runtime version %snumpy.core.multiarray failed to import_ARRAY_API is not PyCObject objectmodule compiled against ABI version 0x%x but this version of numpy is 0x%xmodule compiled against API version 0x%x but this version of numpy is 0x%xFATAL: module compiled as unknown endianFATAL: module compiled as little endian, but detected different endianness at runtime RandomState(seed=None) Container for the Mersenne Twister pseudo-random number generator. `RandomState` exposes a number of methods for generating random numbers drawn from a variety of probability distributions. In addition to the distribution-specific arguments, each method takes a keyword argument `size` that defaults to ``None``. If `size` is ``None``, then a single value is generated and returned. If `size` is an integer, then a 1-D array filled with generated values is returned. If `size` is a tuple, then an array with that shape is filled and returned. *Compatibility Guarantee* A fixed seed and a fixed series of calls to 'RandomState' methods using the same parameters will always produce the same results up to roundoff error except when the values were incorrect. Incorrect values will be fixed and the NumPy version in which the fix was made will be noted in the relevant docstring. Extension of existing parameter ranges and the addition of new parameters is allowed as long the previous behavior remains unchanged. Parameters ---------- seed : {None, int, array_like}, optional Random seed used to initialize the pseudo-random number generator. Can be any integer between 0 and 2**32 - 1 inclusive, an array (or other sequence) of such integers, or ``None`` (the default). If `seed` is ``None``, then `RandomState` will try to read data from ``/dev/urandom`` (or the Windows analogue) if available or seed from the clock otherwise. Notes ----- The Python stdlib module "random" also contains a Mersenne Twister pseudo-random number generator with a number of methods that are similar to the ones available in `RandomState`. `RandomState`, besides being NumPy-aware, has the advantage that it provides a much larger number of probability distributions to choose from. d}tPri`,|NE<h:1(Dvmd3,=:::xZ_ ^^]Dl," 7XyѺX  I,JGGG RVBT9T0T^,c```0ЮĮ??:0yE>rb/dev/random/dev/urandomno errorrandom device unvavailableA<UUUUUU?llfJ?88C$+K?<ٰj_AAz?SˆB8?5gG8?5gG@dg??UUUUUU?"@m{?(\@ffffff@0C.@4@x&?@?UUUUUU?a@X@`@|@@MA$@>@= ףp=@n?[ m?h|?5?333333 @r?$~?@B>٬ @r鷯?Q?Q?9v?-DT! @h㈵>@-DT!@3?r?q?0@;,PH`p `0HP`8LP@pHPt  0P    ` D |  P    P\  ` # + , `4  Ah L`U_da0dpf<hs} p @Pl @Ht@  lP`-7x@HU4anxH p0\pT t,D;L`TpppПP 0! !!@ H"0#"L`#g#D$@$8%p%@@&L&Y('0f'( /(0++Ы+,`p,`,-(-|-0--@-<.`t.0..е/8/`d/|////00PL0pd0н001(1P1`1111 2`$20H2x22 2p22P23(3 D3 h303333P 4Pp4p44zRx $ FJ w?:*3$"D \8Ho4tEFDD a GBH AAB4yEDD E CAJ K CAA 4AAD H AAH O AAG 4pAAD H AAH O AAG Tv(h4AM B ] C K E 8BED D(DP (A ABBE 8BBA A(D0Y (A ABBG   ,D <FFB B(A0A8DP8A0A(B BBB hEG0 AJ ,x[BEE D(A0 (A BBBI N (A BFBG A (A BBBH ~8B@BHBPBXB`BhBpI0(yBAA [ ABF DHBBE K(A0G 0A(A BBBE L\[BEE B(A0D8H 8A0A(B BBBA @lAAG0F DAL } AAA @ AAF x$BBB B(D0A8GP 8G0A(B BBBG v 8D0A(B BBBE  8D0A(B BBBG (<ADD h DAJ )A\ C D(ADD ^ DAD 4\AAG q DAA _ DAD 4P<\AAG q DAA _ DAD @dEAD0I AAK X AAF s CAI TBEB E(A0A8DP~XK`hXAPu 8D0A(B BBBH 8$FKA  ABJ b CBI 8`BBA A(D@b (A ABBF LFBD A(D0% (A ABBD m (C ABBK @FBB A(D0GP 0A(A BBBE @0 FBB A(D0GP 0A(A BBBE LtHpFBB A(A0G@tHHPYHF@w 0A(A BBBC (hAADP2 AAF lcFBB B(A0D8D& 8A0A(B BBBA NV_FW_A(`WAG Z AE K AE P0pFBL D(H0# (A BBBF w (A BBBB XL& FBB B(D0A8DHYFv 8A0A(B BBBD \< 2 FBB B(D0A8D|HYFu 8A0A(B BBBI L P=; BBB E(D0D8D 8D0A(B BBBE H @FC BBB E(D0A8Dpf 8D0A(B BBBI D8 DP;FBD D(DPuXH`YXFPr (A ABBH D "FBB B(A0A8G HYF{ 8A0A(B BBBC "`FBB E(A0A8G! 8A0A(B BBBD nIYFM^BXYAp#|{FTG B(A0A8G 8A0A(B BBBF )TTMMFFFIgBFFBBABIKTTMMFFFIgBFFBBABIKTTMMFFFIgBFFBBABIKTTMMFFFIgEFFBBABIJTTMMFFFIgEFFBBABIJTTMMFFFIgEFFBBABIJTTMMFFFIgEFFBBABIJTTMMFFFIgEFFBBABIJTTMMFFFIgEFFBBABIQEFFBBABIl&~W&~2L&NBB B(G0D8M@W8A0A(B BBBA\&hFBB B(D0A8D@ 8A0A(B BBBA c8A0A(B BBB\D'FBB B(D0A8D@ 8A0A(B BBBF x8A0A(B BBB,'~KED ABJ$'؁+EDD XDAP'OBB B(G0D8N@v 8A0A(B BBBB hP(HI0h(QGG R ABD h$(REDD BAAH(HFEA D(G0U (A ABBF _(A ABB4)~FKD { DBJ UFB0H)FHA G@  AABA <|)OFDD G0M  AABJ Z AAB$)ISG0EF^0$)=ELA( *ЇCAED@  EAH 8*,H cP* /Hfh*$H U*,,H c8*DmSG@} AH x AG *AAK@*x"H U0*EG@ AK l AS A +HQ8+WEG }ALX+D FFG E(A0D8G 8D0A(B BBBE 0+ԗ:FDD D`j  AABH +Ii F L$+P\EDF0GDA0$,|FID DpO  DABA X,Ԝ-,l,SK0] AD eG_0,[EG AA,*MX,3EG ]A ,4EG0e EA ,-EGP AA  AA L-@+H bd-X*H ]|-pCH n-qH v B h-VH A-PAH x-HI-^H ~ E .ԢMO0 EA $<.EDD@DAd.WH N|.`H R.(H.45FEE E(D0D8J` 8A0A(B BBBI L.(FMM G(A0D8G 8D0A(B BBBF D/ث X/ P@ I r E |/ЬEG0 AH GNU@x&    Ԟh&p&o( 7 & $Hi oo$oo#o(&Л 0@P`pМ 0@P`pН 0@P`pО 0@P`pП 0@P`pР 0@P`pС 0@P`pТ 0@P`pУ 0@P`p permutation(x) Randomly permute a sequence, or return a permuted range. If `x` is a multi-dimensional array, it is only shuffled along its first index. Parameters ---------- x : int or array_like If `x` is an integer, randomly permute ``np.arange(x)``. If `x` is an array, make a copy and shuffle the elements randomly. Returns ------- out : ndarray Permuted sequence or array range. Examples -------- >>> np.random.permutation(10) array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) >>> np.random.permutation([1, 4, 9, 12, 15]) array([15, 1, 9, 4, 12]) >>> arr = np.arange(9).reshape((3, 3)) >>> np.random.permutation(arr) array([[6, 7, 8], [0, 1, 2], [3, 4, 5]]) shuffle(x) Modify a sequence in-place by shuffling its contents. This function only shuffles the array along the first axis of a multi-dimensional array. The order of sub-arrays is changed but their contents remains the same. Parameters ---------- x : array_like The array or list to be shuffled. Returns ------- None Examples -------- >>> arr = np.arange(10) >>> np.random.shuffle(arr) >>> arr [1 7 5 2 9 4 3 6 0 8] Multi-dimensional arrays are only shuffled along the first axis: >>> arr = np.arange(9).reshape((3, 3)) >>> np.random.shuffle(arr) >>> arr array([[3, 4, 5], [6, 7, 8], [0, 1, 2]]) dirichlet(alpha, size=None) Draw samples from the Dirichlet distribution. Draw `size` samples of dimension k from a Dirichlet distribution. A Dirichlet-distributed random variable can be seen as a multivariate generalization of a Beta distribution. Dirichlet pdf is the conjugate prior of a multinomial in Bayesian inference. Parameters ---------- alpha : array Parameter of the distribution (k dimension for sample of dimension k). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- samples : ndarray, The drawn samples, of shape (size, alpha.ndim). Notes ----- .. math:: X \approx \prod_{i=1}^{k}{x^{\alpha_i-1}_i} Uses the following property for computation: for each dimension, draw a random sample y_i from a standard gamma generator of shape `alpha_i`, then :math:`X = \frac{1}{\sum_{i=1}^k{y_i}} (y_1, \ldots, y_n)` is Dirichlet distributed. References ---------- .. [1] David McKay, "Information Theory, Inference and Learning Algorithms," chapter 23, http://www.inference.phy.cam.ac.uk/mackay/ .. [2] Wikipedia, "Dirichlet distribution", http://en.wikipedia.org/wiki/Dirichlet_distribution Examples -------- Taking an example cited in Wikipedia, this distribution can be used if one wanted to cut strings (each of initial length 1.0) into K pieces with different lengths, where each piece had, on average, a designated average length, but allowing some variation in the relative sizes of the pieces. >>> s = np.random.dirichlet((10, 5, 3), 20).transpose() >>> plt.barh(range(20), s[0]) >>> plt.barh(range(20), s[1], left=s[0], color='g') >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r') >>> plt.title("Lengths of Strings") multinomial(n, pvals, size=None) Draw samples from a multinomial distribution. The multinomial distribution is a multivariate generalisation of the binomial distribution. Take an experiment with one of ``p`` possible outcomes. An example of such an experiment is throwing a dice, where the outcome can be 1 through 6. Each sample drawn from the distribution represents `n` such experiments. Its values, ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the outcome was ``i``. Parameters ---------- n : int Number of experiments. pvals : sequence of floats, length p Probabilities of each of the ``p`` different outcomes. These should sum to 1 (however, the last element is always assumed to account for the remaining probability, as long as ``sum(pvals[:-1]) <= 1)``. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : ndarray The drawn samples, of shape *size*, if that was provided. If not, the shape is ``(N,)``. In other words, each entry ``out[i,j,...,:]`` is an N-dimensional value drawn from the distribution. Examples -------- Throw a dice 20 times: >>> np.random.multinomial(20, [1/6.]*6, size=1) array([[4, 1, 7, 5, 2, 1]]) It landed 4 times on 1, once on 2, etc. Now, throw the dice 20 times, and 20 times again: >>> np.random.multinomial(20, [1/6.]*6, size=2) array([[3, 4, 3, 3, 4, 3], [2, 4, 3, 4, 0, 7]]) For the first run, we threw 3 times 1, 4 times 2, etc. For the second, we threw 2 times 1, 4 times 2, etc. A loaded die is more likely to land on number 6: >>> np.random.multinomial(100, [1/7.]*5 + [2/7.]) array([11, 16, 14, 17, 16, 26]) The probability inputs should be normalized. As an implementation detail, the value of the last entry is ignored and assumed to take up any leftover probability mass, but this should not be relied on. A biased coin which has twice as much weight on one side as on the other should be sampled like so: >>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3]) # RIGHT array([38, 62]) not like: >>> np.random.multinomial(100, [1.0, 2.0]) # WRONG array([100, 0]) multivariate_normal(mean, cov[, size, check_valid, tol]) Draw random samples from a multivariate normal distribution. The multivariate normal, multinormal or Gaussian distribution is a generalization of the one-dimensional normal distribution to higher dimensions. Such a distribution is specified by its mean and covariance matrix. These parameters are analogous to the mean (average or "center") and variance (standard deviation, or "width," squared) of the one-dimensional normal distribution. Parameters ---------- mean : 1-D array_like, of length N Mean of the N-dimensional distribution. cov : 2-D array_like, of shape (N, N) Covariance matrix of the distribution. It must be symmetric and positive-semidefinite for proper sampling. size : int or tuple of ints, optional Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are generated, and packed in an `m`-by-`n`-by-`k` arrangement. Because each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``. If no shape is specified, a single (`N`-D) sample is returned. check_valid : { 'warn', 'raise', 'ignore' }, optional Behavior when the covariance matrix is not positive semidefinite. tol : float, optional Tolerance when checking the singular values in covariance matrix. Returns ------- out : ndarray The drawn samples, of shape *size*, if that was provided. If not, the shape is ``(N,)``. In other words, each entry ``out[i,j,...,:]`` is an N-dimensional value drawn from the distribution. Notes ----- The mean is a coordinate in N-dimensional space, which represents the location where samples are most likely to be generated. This is analogous to the peak of the bell curve for the one-dimensional or univariate normal distribution. Covariance indicates the level to which two variables vary together. From the multivariate normal distribution, we draw N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]`. The covariance matrix element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its "spread"). Instead of specifying the full covariance matrix, popular approximations include: - Spherical covariance (`cov` is a multiple of the identity matrix) - Diagonal covariance (`cov` has non-negative elements, and only on the diagonal) This geometrical property can be seen in two dimensions by plotting generated data-points: >>> mean = [0, 0] >>> cov = [[1, 0], [0, 100]] # diagonal covariance Diagonal covariance means that points are oriented along x or y-axis: >>> import matplotlib.pyplot as plt >>> x, y = np.random.multivariate_normal(mean, cov, 5000).T >>> plt.plot(x, y, 'x') >>> plt.axis('equal') >>> plt.show() Note that the covariance matrix must be positive semidefinite (a.k.a. nonnegative-definite). Otherwise, the behavior of this method is undefined and backwards compatibility is not guaranteed. References ---------- .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic Processes," 3rd ed., New York: McGraw-Hill, 1991. .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern Classification," 2nd ed., New York: Wiley, 2001. Examples -------- >>> mean = (1, 2) >>> cov = [[1, 0], [0, 1]] >>> x = np.random.multivariate_normal(mean, cov, (3, 3)) >>> x.shape (3, 3, 2) The following is probably true, given that 0.6 is roughly twice the standard deviation: >>> list((x[0,0,:] - mean) < 0.6) [True, True] logseries(p, size=None) Draw samples from a logarithmic series distribution. Samples are drawn from a log series distribution with specified shape parameter, 0 < ``p`` < 1. Parameters ---------- p : float or array_like of floats Shape parameter for the distribution. Must be in the range (0, 1). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logarithmic series distribution. See Also -------- scipy.stats.logser : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Log Series distribution is .. math:: P(k) = \frac{-p^k}{k \ln(1-p)}, where p = probability. The log series distribution is frequently used to represent species richness and occurrence, first proposed by Fisher, Corbet, and Williams in 1943 [2]. It may also be used to model the numbers of occupants seen in cars [3]. References ---------- .. [1] Buzas, Martin A.; Culver, Stephen J., Understanding regional species diversity through the log series distribution of occurrences: BIODIVERSITY RESEARCH Diversity & Distributions, Volume 5, Number 5, September 1999 , pp. 187-195(9). .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12:42-58. .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small Data Sets, CRC Press, 1994. .. [4] Wikipedia, "Logarithmic distribution", http://en.wikipedia.org/wiki/Logarithmic_distribution Examples -------- Draw samples from the distribution: >>> a = .6 >>> s = np.random.logseries(a, 10000) >>> count, bins, ignored = plt.hist(s) # plot against distribution >>> def logseries(k, p): ... return -p**k/(k*log(1-p)) >>> plt.plot(bins, logseries(bins, a)*count.max()/ logseries(bins, a).max(), 'r') >>> plt.show() hypergeometric(ngood, nbad, nsample, size=None) Draw samples from a Hypergeometric distribution. Samples are drawn from a hypergeometric distribution with specified parameters, ngood (ways to make a good selection), nbad (ways to make a bad selection), and nsample = number of items sampled, which is less than or equal to the sum ngood + nbad. Parameters ---------- ngood : int or array_like of ints Number of ways to make a good selection. Must be nonnegative. nbad : int or array_like of ints Number of ways to make a bad selection. Must be nonnegative. nsample : int or array_like of ints Number of items sampled. Must be at least 1 and at most ``ngood + nbad``. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``ngood``, ``nbad``, and ``nsample`` are all scalars. Otherwise, ``np.broadcast(ngood, nbad, nsample).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized hypergeometric distribution. See Also -------- scipy.stats.hypergeom : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Hypergeometric distribution is .. math:: P(x) = \frac{\binom{m}{n}\binom{N-m}{n-x}}{\binom{N}{n}}, where :math:`0 \le x \le m` and :math:`n+m-N \le x \le n` for P(x) the probability of x successes, n = ngood, m = nbad, and N = number of samples. Consider an urn with black and white marbles in it, ngood of them black and nbad are white. If you draw nsample balls without replacement, then the hypergeometric distribution describes the distribution of black balls in the drawn sample. Note that this distribution is very similar to the binomial distribution, except that in this case, samples are drawn without replacement, whereas in the Binomial case samples are drawn with replacement (or the sample space is infinite). As the sample space becomes large, this distribution approaches the binomial. References ---------- .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden and Quigley, 1972. .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/HypergeometricDistribution.html .. [3] Wikipedia, "Hypergeometric distribution", http://en.wikipedia.org/wiki/Hypergeometric_distribution Examples -------- Draw samples from the distribution: >>> ngood, nbad, nsamp = 100, 2, 10 # number of good, number of bad, and number of samples >>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000) >>> hist(s) # note that it is very unlikely to grab both bad items Suppose you have an urn with 15 white and 15 black marbles. If you pull 15 marbles at random, how likely is it that 12 or more of them are one color? >>> s = np.random.hypergeometric(15, 15, 15, 100000) >>> sum(s>=12)/100000. + sum(s<=3)/100000. # answer = 0.003 ... pretty unlikely! geometric(p, size=None) Draw samples from the geometric distribution. Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an experiment is flipping a coin). The geometric distribution models the number of trials that must be run in order to achieve success. It is therefore supported on the positive integers, ``k = 1, 2, ...``. The probability mass function of the geometric distribution is .. math:: f(k) = (1 - p)^{k - 1} p where `p` is the probability of success of an individual trial. Parameters ---------- p : float or array_like of floats The probability of success of an individual trial. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized geometric distribution. Examples -------- Draw ten thousand values from the geometric distribution, with the probability of an individual success equal to 0.35: >>> z = np.random.geometric(p=0.35, size=10000) How many trials succeeded after a single run? >>> (z == 1).sum() / 10000. 0.34889999999999999 #random zipf(a, size=None) Draw samples from a Zipf distribution. Samples are drawn from a Zipf distribution with specified parameter `a` > 1. The Zipf distribution (also known as the zeta distribution) is a continuous probability distribution that satisfies Zipf's law: the frequency of an item is inversely proportional to its rank in a frequency table. Parameters ---------- a : float or array_like of floats Distribution parameter. Should be greater than 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Zipf distribution. See Also -------- scipy.stats.zipf : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the Zipf distribution is .. math:: p(x) = \frac{x^{-a}}{\zeta(a)}, where :math:`\zeta` is the Riemann Zeta function. It is named for the American linguist George Kingsley Zipf, who noted that the frequency of any word in a sample of a language is inversely proportional to its rank in the frequency table. References ---------- .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative Frequency in Language," Cambridge, MA: Harvard Univ. Press, 1932. Examples -------- Draw samples from the distribution: >>> a = 2. # parameter >>> s = np.random.zipf(a, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy import special Truncate s values at 50 so plot is interesting: >>> count, bins, ignored = plt.hist(s[s<50], 50, normed=True) >>> x = np.arange(1., 50.) >>> y = x**(-a) / special.zetac(a) >>> plt.plot(x, y/max(y), linewidth=2, color='r') >>> plt.show() poisson(lam=1.0, size=None) Draw samples from a Poisson distribution. The Poisson distribution is the limit of the binomial distribution for large N. Parameters ---------- lam : float or array_like of floats Expectation of interval, should be >= 0. A sequence of expectation intervals must be broadcastable over the requested size. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``lam`` is a scalar. Otherwise, ``np.array(lam).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Poisson distribution. Notes ----- The Poisson distribution .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!} For events with an expected separation :math:`\lambda` the Poisson distribution :math:`f(k; \lambda)` describes the probability of :math:`k` events occurring within the observed interval :math:`\lambda`. Because the output is limited to the range of the C long type, a ValueError is raised when `lam` is within 10 sigma of the maximum representable value. References ---------- .. [1] Weisstein, Eric W. "Poisson Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html .. [2] Wikipedia, "Poisson distribution", http://en.wikipedia.org/wiki/Poisson_distribution Examples -------- Draw samples from the distribution: >>> import numpy as np >>> s = np.random.poisson(5, 10000) Display histogram of the sample: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 14, normed=True) >>> plt.show() Draw each 100 values for lambda 100 and 500: >>> s = np.random.poisson(lam=(100., 500.), size=(100, 2)) negative_binomial(n, p, size=None) Draw samples from a negative binomial distribution. Samples are drawn from a negative binomial distribution with specified parameters, `n` trials and `p` probability of success where `n` is an integer > 0 and `p` is in the interval [0, 1]. Parameters ---------- n : int or array_like of ints Parameter of the distribution, > 0. Floats are also accepted, but they will be truncated to integers. p : float or array_like of floats Parameter of the distribution, >= 0 and <=1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``n`` and ``p`` are both scalars. Otherwise, ``np.broadcast(n, p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized negative binomial distribution, where each sample is equal to N, the number of trials it took to achieve n - 1 successes, N - (n - 1) failures, and a success on the, (N + n)th trial. Notes ----- The probability density for the negative binomial distribution is .. math:: P(N;n,p) = \binom{N+n-1}{n-1}p^{n}(1-p)^{N}, where :math:`n-1` is the number of successes, :math:`p` is the probability of success, and :math:`N+n-1` is the number of trials. The negative binomial distribution gives the probability of n-1 successes and N failures in N+n-1 trials, and success on the (N+n)th trial. If one throws a die repeatedly until the third time a "1" appears, then the probability distribution of the number of non-"1"s that appear before the third "1" is a negative binomial distribution. References ---------- .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/NegativeBinomialDistribution.html .. [2] Wikipedia, "Negative binomial distribution", http://en.wikipedia.org/wiki/Negative_binomial_distribution Examples -------- Draw samples from the distribution: A real world example. A company drills wild-cat oil exploration wells, each with an estimated probability of success of 0.1. What is the probability of having one success for each successive well, that is what is the probability of a single success after drilling 5 wells, after 6 wells, etc.? >>> s = np.random.negative_binomial(1, 0.1, 100000) >>> for i in range(1, 11): ... probability = sum(s>> n, p = 10, .5 # number of trials, probability of each trial >>> s = np.random.binomial(n, p, 1000) # result of flipping a coin 10 times, tested 1000 times. A real world example. A company drills 9 wild-cat oil exploration wells, each with an estimated probability of success of 0.1. All nine wells fail. What is the probability of that happening? Let's do 20,000 trials of the model, and count the number that generate zero positive results. >>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000. # answer = 0.38885, or 38%. triangular(left, mode, right, size=None) Draw samples from the triangular distribution over the interval ``[left, right]``. The triangular distribution is a continuous probability distribution with lower limit left, peak at mode, and upper limit right. Unlike the other distributions, these parameters directly define the shape of the pdf. Parameters ---------- left : float or array_like of floats Lower limit. mode : float or array_like of floats The value where the peak of the distribution occurs. The value should fulfill the condition ``left <= mode <= right``. right : float or array_like of floats Upper limit, should be larger than `left`. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``left``, ``mode``, and ``right`` are all scalars. Otherwise, ``np.broadcast(left, mode, right).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized triangular distribution. Notes ----- The probability density function for the triangular distribution is .. math:: P(x;l, m, r) = \begin{cases} \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\ \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\ 0& \text{otherwise}. \end{cases} The triangular distribution is often used in ill-defined problems where the underlying distribution is not known, but some knowledge of the limits and mode exists. Often it is used in simulations. References ---------- .. [1] Wikipedia, "Triangular distribution" http://en.wikipedia.org/wiki/Triangular_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200, ... normed=True) >>> plt.show() wald(mean, scale, size=None) Draw samples from a Wald, or inverse Gaussian, distribution. As the scale approaches infinity, the distribution becomes more like a Gaussian. Some references claim that the Wald is an inverse Gaussian with mean equal to 1, but this is by no means universal. The inverse Gaussian distribution was first studied in relationship to Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian because there is an inverse relationship between the time to cover a unit distance and distance covered in unit time. Parameters ---------- mean : float or array_like of floats Distribution mean, should be > 0. scale : float or array_like of floats Scale parameter, should be >= 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Wald distribution. Notes ----- The probability density function for the Wald distribution is .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^ \frac{-scale(x-mean)^2}{2\cdotp mean^2x} As noted above the inverse Gaussian distribution first arise from attempts to model Brownian motion. It is also a competitor to the Weibull for use in reliability modeling and modeling stock returns and interest rate processes. References ---------- .. [1] Brighton Webs Ltd., Wald Distribution, http://www.brighton-webs.co.uk/distributions/wald.asp .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian Distribution: Theory : Methodology, and Applications", CRC Press, 1988. .. [3] Wikipedia, "Wald distribution" http://en.wikipedia.org/wiki/Wald_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, normed=True) >>> plt.show() rayleigh(scale=1.0, size=None) Draw samples from a Rayleigh distribution. The :math:`\chi` and Weibull distributions are generalizations of the Rayleigh. Parameters ---------- scale : float or array_like of floats, optional Scale, also equals the mode. Should be >= 0. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``scale`` is a scalar. Otherwise, ``np.array(scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Rayleigh distribution. Notes ----- The probability density function for the Rayleigh distribution is .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}} The Rayleigh distribution would arise, for example, if the East and North components of the wind velocity had identical zero-mean Gaussian distributions. Then the wind speed would have a Rayleigh distribution. References ---------- .. [1] Brighton Webs Ltd., "Rayleigh Distribution," http://www.brighton-webs.co.uk/distributions/rayleigh.asp .. [2] Wikipedia, "Rayleigh distribution" http://en.wikipedia.org/wiki/Rayleigh_distribution Examples -------- Draw values from the distribution and plot the histogram >>> values = hist(np.random.rayleigh(3, 100000), bins=200, normed=True) Wave heights tend to follow a Rayleigh distribution. If the mean wave height is 1 meter, what fraction of waves are likely to be larger than 3 meters? >>> meanvalue = 1 >>> modevalue = np.sqrt(2 / np.pi) * meanvalue >>> s = np.random.rayleigh(modevalue, 1000000) The percentage of waves larger than 3 meters is: >>> 100.*sum(s>3)/1000000. 0.087300000000000003 lognormal(mean=0.0, sigma=1.0, size=None) Draw samples from a log-normal distribution. Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape. Note that the mean and standard deviation are not the values for the distribution itself, but of the underlying normal distribution it is derived from. Parameters ---------- mean : float or array_like of floats, optional Mean value of the underlying normal distribution. Default is 0. sigma : float or array_like of floats, optional Standard deviation of the underlying normal distribution. Should be greater than zero. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``sigma`` are both scalars. Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized log-normal distribution. See Also -------- scipy.stats.lognorm : probability density function, distribution, cumulative density function, etc. Notes ----- A variable `x` has a log-normal distribution if `log(x)` is normally distributed. The probability density function for the log-normal distribution is: .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})} where :math:`\mu` is the mean and :math:`\sigma` is the standard deviation of the normally distributed logarithm of the variable. A log-normal distribution results if a random variable is the *product* of a large number of independent, identically-distributed variables in the same way that a normal distribution results if the variable is the *sum* of a large number of independent, identically-distributed variables. References ---------- .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal Distributions across the Sciences: Keys and Clues," BioScience, Vol. 51, No. 5, May, 2001. http://stat.ethz.ch/~stahel/lognormal/bioscience.pdf .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme Values," Basel: Birkhauser Verlag, 2001, pp. 31-32. Examples -------- Draw samples from the distribution: >>> mu, sigma = 3., 1. # mean and standard deviation >>> s = np.random.lognormal(mu, sigma, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 100, normed=True, align='mid') >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, linewidth=2, color='r') >>> plt.axis('tight') >>> plt.show() Demonstrate that taking the products of random samples from a uniform distribution can be fit well by a log-normal probability density function. >>> # Generate a thousand samples: each is the product of 100 random >>> # values, drawn from a normal distribution. >>> b = [] >>> for i in range(1000): ... a = 10. + np.random.random(100) ... b.append(np.product(a)) >>> b = np.array(b) / np.min(b) # scale values to be positive >>> count, bins, ignored = plt.hist(b, 100, normed=True, align='mid') >>> sigma = np.std(np.log(b)) >>> mu = np.mean(np.log(b)) >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, color='r', linewidth=2) >>> plt.show() logistic(loc=0.0, scale=1.0, size=None) Draw samples from a logistic distribution. Samples are drawn from a logistic distribution with specified parameters, loc (location or mean, also median), and scale (>0). Parameters ---------- loc : float or array_like of floats, optional Parameter of the distribution. Default is 0. scale : float or array_like of floats, optional Parameter of the distribution. Should be greater than zero. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logistic distribution. See Also -------- scipy.stats.logistic : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Logistic distribution is .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2}, where :math:`\mu` = location and :math:`s` = scale. The Logistic distribution is used in Extreme Value problems where it can act as a mixture of Gumbel distributions, in Epidemiology, and by the World Chess Federation (FIDE) where it is used in the Elo ranking system, assuming the performance of each player is a logistically distributed random variable. References ---------- .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of Extreme Values, from Insurance, Finance, Hydrology and Other Fields," Birkhauser Verlag, Basel, pp 132-133. .. [2] Weisstein, Eric W. "Logistic Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/LogisticDistribution.html .. [3] Wikipedia, "Logistic-distribution", http://en.wikipedia.org/wiki/Logistic_distribution Examples -------- Draw samples from the distribution: >>> loc, scale = 10, 1 >>> s = np.random.logistic(loc, scale, 10000) >>> count, bins, ignored = plt.hist(s, bins=50) # plot against distribution >>> def logist(x, loc, scale): ... return exp((loc-x)/scale)/(scale*(1+exp((loc-x)/scale))**2) >>> plt.plot(bins, logist(bins, loc, scale)*count.max()/\ ... logist(bins, loc, scale).max()) >>> plt.show() gumbel(loc=0.0, scale=1.0, size=None) Draw samples from a Gumbel distribution. Draw samples from a Gumbel distribution with specified location and scale. For more information on the Gumbel distribution, see Notes and References below. Parameters ---------- loc : float or array_like of floats, optional The location of the mode of the distribution. Default is 0. scale : float or array_like of floats, optional The scale parameter of the distribution. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Gumbel distribution. See Also -------- scipy.stats.gumbel_l scipy.stats.gumbel_r scipy.stats.genextreme weibull Notes ----- The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value Type I) distribution is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. The Gumbel is a special case of the Extreme Value Type I distribution for maximums from distributions with "exponential-like" tails. The probability density for the Gumbel distribution is .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/ \beta}}, where :math:`\mu` is the mode, a location parameter, and :math:`\beta` is the scale parameter. The Gumbel (named for German mathematician Emil Julius Gumbel) was used very early in the hydrology literature, for modeling the occurrence of flood events. It is also used for modeling maximum wind speed and rainfall rates. It is a "fat-tailed" distribution - the probability of an event in the tail of the distribution is larger than if one used a Gaussian, hence the surprisingly frequent occurrence of 100-year floods. Floods were initially modeled as a Gaussian process, which underestimated the frequency of extreme events. It is one of a class of extreme value distributions, the Generalized Extreme Value (GEV) distributions, which also includes the Weibull and Frechet. The function has a mean of :math:`\mu + 0.57721\beta` and a variance of :math:`\frac{\pi^2}{6}\beta^2`. References ---------- .. [1] Gumbel, E. J., "Statistics of Extremes," New York: Columbia University Press, 1958. .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme Values from Insurance, Finance, Hydrology and Other Fields," Basel: Birkhauser Verlag, 2001. Examples -------- Draw samples from the distribution: >>> mu, beta = 0, 0.1 # location and scale >>> s = np.random.gumbel(mu, beta, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, normed=True) >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp( -np.exp( -(bins - mu) /beta) ), ... linewidth=2, color='r') >>> plt.show() Show how an extreme value distribution can arise from a Gaussian process and compare to a Gaussian: >>> means = [] >>> maxima = [] >>> for i in range(0,1000) : ... a = np.random.normal(mu, beta, 1000) ... means.append(a.mean()) ... maxima.append(a.max()) >>> count, bins, ignored = plt.hist(maxima, 30, normed=True) >>> beta = np.std(maxima) * np.sqrt(6) / np.pi >>> mu = np.mean(maxima) - 0.57721*beta >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp(-np.exp(-(bins - mu)/beta)), ... linewidth=2, color='r') >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi)) ... * np.exp(-(bins - mu)**2 / (2 * beta**2)), ... linewidth=2, color='g') >>> plt.show() laplace(loc=0.0, scale=1.0, size=None) Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale (decay). The Laplace distribution is similar to the Gaussian/normal distribution, but is sharper at the peak and has fatter tails. It represents the difference between two independent, identically distributed exponential random variables. Parameters ---------- loc : float or array_like of floats, optional The position, :math:`\mu`, of the distribution peak. Default is 0. scale : float or array_like of floats, optional :math:`\lambda`, the exponential decay. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Laplace distribution. Notes ----- It has the probability density function .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda} \exp\left(-\frac{|x - \mu|}{\lambda}\right). The first law of Laplace, from 1774, states that the frequency of an error can be expressed as an exponential function of the absolute magnitude of the error, which leads to the Laplace distribution. For many problems in economics and health sciences, this distribution seems to model the data better than the standard Gaussian distribution. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and Generalizations, " Birkhauser, 2001. .. [3] Weisstein, Eric W. "Laplace Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/LaplaceDistribution.html .. [4] Wikipedia, "Laplace distribution", http://en.wikipedia.org/wiki/Laplace_distribution Examples -------- Draw samples from the distribution >>> loc, scale = 0., 1. >>> s = np.random.laplace(loc, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, normed=True) >>> x = np.arange(-8., 8., .01) >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale) >>> plt.plot(x, pdf) Plot Gaussian for comparison: >>> g = (1/(scale * np.sqrt(2 * np.pi)) * ... np.exp(-(x - loc)**2 / (2 * scale**2))) >>> plt.plot(x,g) power(a, size=None) Draws samples in [0, 1] from a power distribution with positive exponent a - 1. Also known as the power function distribution. Parameters ---------- a : float or array_like of floats Parameter of the distribution. Should be greater than zero. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized power distribution. Raises ------ ValueError If a < 1. Notes ----- The probability density function is .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0. The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special case of the Beta distribution. It is used, for example, in modeling the over-reporting of insurance claims. References ---------- .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions in economics and actuarial sciences", Wiley, 2003. .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148: Dataplot Reference Manual, Volume 2: Let Subcommands and Library Functions", National Institute of Standards and Technology Handbook Series, June 2003. http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf Examples -------- Draw samples from the distribution: >>> a = 5. # shape >>> samples = 1000 >>> s = np.random.power(a, samples) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, bins=30) >>> x = np.linspace(0, 1, 100) >>> y = a*x**(a-1.) >>> normed_y = samples*np.diff(bins)[0]*y >>> plt.plot(x, normed_y) >>> plt.show() Compare the power function distribution to the inverse of the Pareto. >>> from scipy import stats >>> rvs = np.random.power(5, 1000000) >>> rvsp = np.random.pareto(5, 1000000) >>> xx = np.linspace(0,1,100) >>> powpdf = stats.powerlaw.pdf(xx,5) >>> plt.figure() >>> plt.hist(rvs, bins=50, normed=True) >>> plt.plot(xx,powpdf,'r-') >>> plt.title('np.random.power(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, normed=True) >>> plt.plot(xx,powpdf,'r-') >>> plt.title('inverse of 1 + np.random.pareto(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, normed=True) >>> plt.plot(xx,powpdf,'r-') >>> plt.title('inverse of stats.pareto(5)') weibull(a, size=None) Draw samples from a Weibull distribution. Draw samples from a 1-parameter Weibull distribution with the given shape parameter `a`. .. math:: X = (-ln(U))^{1/a} Here, U is drawn from the uniform distribution over (0,1]. The more common 2-parameter Weibull, including a scale parameter :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`. Parameters ---------- a : float or array_like of floats Shape of the distribution. Should be greater than zero. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Weibull distribution. See Also -------- scipy.stats.weibull_max scipy.stats.weibull_min scipy.stats.genextreme gumbel Notes ----- The Weibull (or Type III asymptotic extreme value distribution for smallest values, SEV Type III, or Rosin-Rammler distribution) is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. This class includes the Gumbel and Frechet distributions. The probability density for the Weibull distribution is .. math:: p(x) = \frac{a} {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a}, where :math:`a` is the shape and :math:`\lambda` the scale. The function has its peak (the mode) at :math:`\lambda(\frac{a-1}{a})^{1/a}`. When ``a = 1``, the Weibull distribution reduces to the exponential distribution. References ---------- .. [1] Waloddi Weibull, Royal Technical University, Stockholm, 1939 "A Statistical Theory Of The Strength Of Materials", Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939, Generalstabens Litografiska Anstalts Forlag, Stockholm. .. [2] Waloddi Weibull, "A Statistical Distribution Function of Wide Applicability", Journal Of Applied Mechanics ASME Paper 1951. .. [3] Wikipedia, "Weibull distribution", http://en.wikipedia.org/wiki/Weibull_distribution Examples -------- Draw samples from the distribution: >>> a = 5. # shape >>> s = np.random.weibull(a, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> x = np.arange(1,100.)/50. >>> def weib(x,n,a): ... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a) >>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000)) >>> x = np.arange(1,100.)/50. >>> scale = count.max()/weib(x, 1., 5.).max() >>> plt.plot(x, weib(x, 1., 5.)*scale) >>> plt.show() pareto(a, size=None) Draw samples from a Pareto II or Lomax distribution with specified shape. The Lomax or Pareto II distribution is a shifted Pareto distribution. The classical Pareto distribution can be obtained from the Lomax distribution by adding 1 and multiplying by the scale parameter ``m`` (see Notes). The smallest value of the Lomax distribution is zero while for the classical Pareto distribution it is ``mu``, where the standard Pareto distribution has location ``mu = 1``. Lomax can also be considered as a simplified version of the Generalized Pareto distribution (available in SciPy), with the scale set to one and the location set to zero. The Pareto distribution must be greater than zero, and is unbounded above. It is also known as the "80-20 rule". In this distribution, 80 percent of the weights are in the lowest 20 percent of the range, while the other 20 percent fill the remaining 80 percent of the range. Parameters ---------- a : float or array_like of floats Shape of the distribution. Should be greater than zero. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Pareto distribution. See Also -------- scipy.stats.lomax : probability density function, distribution or cumulative density function, etc. scipy.stats.genpareto : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Pareto distribution is .. math:: p(x) = \frac{am^a}{x^{a+1}} where :math:`a` is the shape and :math:`m` the scale. The Pareto distribution, named after the Italian economist Vilfredo Pareto, is a power law probability distribution useful in many real world problems. Outside the field of economics it is generally referred to as the Bradford distribution. Pareto developed the distribution to describe the distribution of wealth in an economy. It has also found use in insurance, web page access statistics, oil field sizes, and many other problems, including the download frequency for projects in Sourceforge [1]_. It is one of the so-called "fat-tailed" distributions. References ---------- .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of Sourceforge projects. .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne. .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme Values, Birkhauser Verlag, Basel, pp 23-30. .. [4] Wikipedia, "Pareto distribution", http://en.wikipedia.org/wiki/Pareto_distribution Examples -------- Draw samples from the distribution: >>> a, m = 3., 2. # shape and mode >>> s = (np.random.pareto(a, 1000) + 1) * m Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, 100, normed=True) >>> fit = a*m**a / bins**(a+1) >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r') >>> plt.show() vonmises(mu, kappa, size=None) Draw samples from a von Mises distribution. Samples are drawn from a von Mises distribution with specified mode (mu) and dispersion (kappa), on the interval [-pi, pi]. The von Mises distribution (also known as the circular normal distribution) is a continuous probability distribution on the unit circle. It may be thought of as the circular analogue of the normal distribution. Parameters ---------- mu : float or array_like of floats Mode ("center") of the distribution. kappa : float or array_like of floats Dispersion of the distribution, has to be >=0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mu`` and ``kappa`` are both scalars. Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized von Mises distribution. See Also -------- scipy.stats.vonmises : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the von Mises distribution is .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)}, where :math:`\mu` is the mode and :math:`\kappa` the dispersion, and :math:`I_0(\kappa)` is the modified Bessel function of order 0. The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now the Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in probability theory, aerodynamics, fluid mechanics, and philosophy of science. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] von Mises, R., "Mathematical Theory of Probability and Statistics", New York: Academic Press, 1964. Examples -------- Draw samples from the distribution: >>> mu, kappa = 0.0, 4.0 # mean and dispersion >>> s = np.random.vonmises(mu, kappa, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy.special import i0 >>> plt.hist(s, 50, normed=True) >>> x = np.linspace(-np.pi, np.pi, num=51) >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa)) >>> plt.plot(x, y, linewidth=2, color='r') >>> plt.show() standard_t(df, size=None) Draw samples from a standard Student's t distribution with `df` degrees of freedom. A special case of the hyperbolic distribution. As `df` gets large, the result resembles that of the standard normal distribution (`standard_normal`). Parameters ---------- df : int or array_like of ints Degrees of freedom, should be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard Student's t distribution. Notes ----- The probability density function for the t distribution is .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df} \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2} The t test is based on an assumption that the data come from a Normal distribution. The t test provides a way to test whether the sample mean (that is the mean calculated from the data) is a good estimate of the true mean. The derivation of the t-distribution was first published in 1908 by William Gosset while working for the Guinness Brewery in Dublin. Due to proprietary issues, he had to publish under a pseudonym, and so he used the name Student. References ---------- .. [1] Dalgaard, Peter, "Introductory Statistics With R", Springer, 2002. .. [2] Wikipedia, "Student's t-distribution" http://en.wikipedia.org/wiki/Student's_t-distribution Examples -------- From Dalgaard page 83 [1]_, suppose the daily energy intake for 11 women in Kj is: >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \ ... 7515, 8230, 8770]) Does their energy intake deviate systematically from the recommended value of 7725 kJ? We have 10 degrees of freedom, so is the sample mean within 95% of the recommended value? >>> s = np.random.standard_t(10, size=100000) >>> np.mean(intake) 6753.636363636364 >>> intake.std(ddof=1) 1142.1232221373727 Calculate the t statistic, setting the ddof parameter to the unbiased value so the divisor in the standard deviation will be degrees of freedom, N-1. >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake))) >>> import matplotlib.pyplot as plt >>> h = plt.hist(s, bins=100, normed=True) For a one-sided t-test, how far out in the distribution does the t statistic appear? >>> np.sum(s>> s = np.random.standard_cauchy(1000000) >>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well >>> plt.hist(s, bins=100) >>> plt.show() noncentral_chisquare(df, nonc, size=None) Draw samples from a noncentral chi-square distribution. The noncentral :math:`\chi^2` distribution is a generalisation of the :math:`\chi^2` distribution. Parameters ---------- df : int or array_like of ints Degrees of freedom, should be > 0 as of NumPy 1.10.0, should be > 1 for earlier versions. nonc : float or array_like of floats Non-centrality, should be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` and ``nonc`` are both scalars. Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral chi-square distribution. Notes ----- The probability density function for the noncentral Chi-square distribution is .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0} \frac{e^{-nonc/2}(nonc/2)^{i}}{i!} \P_{Y_{df+2i}}(x), where :math:`Y_{q}` is the Chi-square with q degrees of freedom. In Delhi (2007), it is noted that the noncentral chi-square is useful in bombing and coverage problems, the probability of killing the point target given by the noncentral chi-squared distribution. References ---------- .. [1] Delhi, M.S. Holla, "On a noncentral chi-square distribution in the analysis of weapon systems effectiveness", Metrika, Volume 15, Number 1 / December, 1970. .. [2] Wikipedia, "Noncentral chi-square distribution" http://en.wikipedia.org/wiki/Noncentral_chi-square_distribution Examples -------- Draw values from the distribution and plot the histogram >>> import matplotlib.pyplot as plt >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000), ... bins=200, normed=True) >>> plt.show() Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare. >>> plt.figure() >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000), ... bins=np.arange(0., 25, .1), normed=True) >>> values2 = plt.hist(np.random.chisquare(3, 100000), ... bins=np.arange(0., 25, .1), normed=True) >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob') >>> plt.show() Demonstrate how large values of non-centrality lead to a more symmetric distribution. >>> plt.figure() >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000), ... bins=200, normed=True) >>> plt.show() chisquare(df, size=None) Draw samples from a chi-square distribution. When `df` independent random variables, each with standard normal distributions (mean 0, variance 1), are squared and summed, the resulting distribution is chi-square (see Notes). This distribution is often used in hypothesis testing. Parameters ---------- df : int or array_like of ints Number of degrees of freedom. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized chi-square distribution. Raises ------ ValueError When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``) is given. Notes ----- The variable obtained by summing the squares of `df` independent, standard normally distributed random variables: .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i is chi-square distributed, denoted .. math:: Q \sim \chi^2_k. The probability density function of the chi-squared distribution is .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)} x^{k/2 - 1} e^{-x/2}, where :math:`\Gamma` is the gamma function, .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt. References ---------- .. [1] NIST "Engineering Statistics Handbook" http://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm Examples -------- >>> np.random.chisquare(2,4) array([ 1.89920014, 9.00867716, 3.13710533, 5.62318272]) noncentral_f(dfnum, dfden, nonc, size=None) Draw samples from the noncentral F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters > 1. `nonc` is the non-centrality parameter. Parameters ---------- dfnum : int or array_like of ints Parameter, should be > 1. dfden : int or array_like of ints Parameter, should be > 1. nonc : float or array_like of floats Parameter, should be >= 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum``, ``dfden``, and ``nonc`` are all scalars. Otherwise, ``np.broadcast(dfnum, dfden, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral Fisher distribution. Notes ----- When calculating the power of an experiment (power = probability of rejecting the null hypothesis when a specific alternative is true) the non-central F statistic becomes important. When the null hypothesis is true, the F statistic follows a central F distribution. When the null hypothesis is not true, then it follows a non-central F statistic. References ---------- .. [1] Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/NoncentralF-Distribution.html .. [2] Wikipedia, "Noncentral F-distribution", http://en.wikipedia.org/wiki/Noncentral_F-distribution Examples -------- In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral F distribution. We need to calculate the area in the tail of the distribution that exceeds the value of the F distribution for the null hypothesis. We'll plot the two probability distributions for comparison. >>> dfnum = 3 # between group deg of freedom >>> dfden = 20 # within groups degrees of freedom >>> nonc = 3.0 >>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000) >>> NF = np.histogram(nc_vals, bins=50, normed=True) >>> c_vals = np.random.f(dfnum, dfden, 1000000) >>> F = np.histogram(c_vals, bins=50, normed=True) >>> plt.plot(F[1][1:], F[0]) >>> plt.plot(NF[1][1:], NF[0]) >>> plt.show() f(dfnum, dfden, size=None) Draw samples from an F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters should be greater than zero. The random variate of the F distribution (also known as the Fisher distribution) is a continuous probability distribution that arises in ANOVA tests, and is the ratio of two chi-square variates. Parameters ---------- dfnum : int or array_like of ints Degrees of freedom in numerator. Should be greater than zero. dfden : int or array_like of ints Degrees of freedom in denominator. Should be greater than zero. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum`` and ``dfden`` are both scalars. Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Fisher distribution. See Also -------- scipy.stats.f : probability density function, distribution or cumulative density function, etc. Notes ----- The F statistic is used to compare in-group variances to between-group variances. Calculating the distribution depends on the sampling, and so it is a function of the respective degrees of freedom in the problem. The variable `dfnum` is the number of samples minus one, the between-groups degrees of freedom, while `dfden` is the within-groups degrees of freedom, the sum of the number of samples in each group minus the number of groups. References ---------- .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill, Fifth Edition, 2002. .. [2] Wikipedia, "F-distribution", http://en.wikipedia.org/wiki/F-distribution Examples -------- An example from Glantz[1], pp 47-40: Two groups, children of diabetics (25 people) and children from people without diabetes (25 controls). Fasting blood glucose was measured, case group had a mean value of 86.1, controls had a mean value of 82.2. Standard deviations were 2.09 and 2.49 respectively. Are these data consistent with the null hypothesis that the parents diabetic status does not affect their children's blood glucose levels? Calculating the F statistic from the data gives a value of 36.01. Draw samples from the distribution: >>> dfnum = 1. # between group degrees of freedom >>> dfden = 48. # within groups degrees of freedom >>> s = np.random.f(dfnum, dfden, 1000) The lower bound for the top 1% of the samples is : >>> sort(s)[-10] 7.61988120985 So there is about a 1% chance that the F statistic will exceed 7.62, the measured value is 36, so the null hypothesis is rejected at the 1% level. gamma(shape, scale=1.0, size=None) Draw samples from a Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, `shape` (sometimes designated "k") and `scale` (sometimes designated "theta"), where both parameters are > 0. Parameters ---------- shape : float or array_like of floats The shape of the gamma distribution. Should be greater than zero. scale : float or array_like of floats, optional The scale of the gamma distribution. Should be greater than zero. Default is equal to 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", http://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 2. # mean=4, std=2*sqrt(2) >>> s = np.random.gamma(shape, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps >>> count, bins, ignored = plt.hist(s, 50, normed=True) >>> y = bins**(shape-1)*(np.exp(-bins/scale) / ... (sps.gamma(shape)*scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') >>> plt.show() standard_gamma(shape, size=None) Draw samples from a standard Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated "k") and scale=1. Parameters ---------- shape : float or array_like of floats Parameter, should be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` is a scalar. Otherwise, ``np.array(shape).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", http://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 1. # mean and width >>> s = np.random.standard_gamma(shape, 1000000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps >>> count, bins, ignored = plt.hist(s, 50, normed=True) >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ \ ... (sps.gamma(shape) * scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') >>> plt.show() standard_exponential(size=None) Draw samples from the standard exponential distribution. `standard_exponential` is identical to the exponential distribution with a scale parameter of 1. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : float or ndarray Drawn samples. Examples -------- Output a 3x8000 array: >>> n = np.random.standard_exponential((3, 8000)) exponential(scale=1.0, size=None) Draw samples from an exponential distribution. Its probability density function is .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}), for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter, which is the inverse of the rate parameter :math:`\lambda = 1/\beta`. The rate parameter is an alternative, widely used parameterization of the exponential distribution [3]_. The exponential distribution is a continuous analogue of the geometric distribution. It describes many common situations, such as the size of raindrops measured over many rainstorms [1]_, or the time between page requests to Wikipedia [2]_. Parameters ---------- scale : float or array_like of floats The scale parameter, :math:`\beta = 1/\lambda`. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``scale`` is a scalar. Otherwise, ``np.array(scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized exponential distribution. References ---------- .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and Random Signal Principles", 4th ed, 2001, p. 57. .. [2] Wikipedia, "Poisson process", http://en.wikipedia.org/wiki/Poisson_process .. [3] Wikipedia, "Exponential distribution", http://en.wikipedia.org/wiki/Exponential_distribution beta(a, b, size=None) Draw samples from a Beta distribution. The Beta distribution is a special case of the Dirichlet distribution, and is related to the Gamma distribution. It has the probability distribution function .. math:: f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, where the normalisation, B, is the beta function, .. math:: B(\alpha, \beta) = \int_0^1 t^{\alpha - 1} (1 - t)^{\beta - 1} dt. It is often seen in Bayesian inference and order statistics. Parameters ---------- a : float or array_like of floats Alpha, non-negative. b : float or array_like of floats Beta, non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` and ``b`` are both scalars. Otherwise, ``np.broadcast(a, b).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized beta distribution. normal(loc=0.0, scale=1.0, size=None) Draw random samples from a normal (Gaussian) distribution. The probability density function of the normal distribution, first derived by De Moivre and 200 years later by both Gauss and Laplace independently [2]_, is often called the bell curve because of its characteristic shape (see the example below). The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution of samples influenced by a large number of tiny, random disturbances, each with its own unique distribution [2]_. Parameters ---------- loc : float or array_like of floats Mean ("centre") of the distribution. scale : float or array_like of floats Standard deviation (spread or "width") of the distribution. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized normal distribution. See Also -------- scipy.stats.norm : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gaussian distribution is .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }} e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} }, where :math:`\mu` is the mean and :math:`\sigma` the standard deviation. The square of the standard deviation, :math:`\sigma^2`, is called the variance. The function has its peak at the mean, and its "spread" increases with the standard deviation (the function reaches 0.607 times its maximum at :math:`x + \sigma` and :math:`x - \sigma` [2]_). This implies that `numpy.random.normal` is more likely to return samples lying close to the mean, rather than those far away. References ---------- .. [1] Wikipedia, "Normal distribution", http://en.wikipedia.org/wiki/Normal_distribution .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability, Random Variables and Random Signal Principles", 4th ed., 2001, pp. 51, 51, 125. Examples -------- Draw samples from the distribution: >>> mu, sigma = 0, 0.1 # mean and standard deviation >>> s = np.random.normal(mu, sigma, 1000) Verify the mean and the variance: >>> abs(mu - np.mean(s)) < 0.01 True >>> abs(sigma - np.std(s, ddof=1)) < 0.01 True Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, normed=True) >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) * ... np.exp( - (bins - mu)**2 / (2 * sigma**2) ), ... linewidth=2, color='r') >>> plt.show() standard_normal(size=None) Draw samples from a standard Normal distribution (mean=0, stdev=1). Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : float or ndarray Drawn samples. Examples -------- >>> s = np.random.standard_normal(8000) >>> s array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, #random -0.38672696, -0.4685006 ]) #random >>> s.shape (8000,) >>> s = np.random.standard_normal(size=(3, 4, 2)) >>> s.shape (3, 4, 2) random_integers(low, high=None, size=None) Random integers of type np.int between `low` and `high`, inclusive. Return random integers of type np.int from the "discrete uniform" distribution in the closed interval [`low`, `high`]. If `high` is None (the default), then results are from [1, `low`]. The np.int type translates to the C long type used by Python 2 for "short" integers and its precision is platform dependent. This function has been deprecated. Use randint instead. .. deprecated:: 1.11.0 Parameters ---------- low : int Lowest (signed) integer to be drawn from the distribution (unless ``high=None``, in which case this parameter is the *highest* such integer). high : int, optional If provided, the largest (signed) integer to be drawn from the distribution (see above for behavior if ``high=None``). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : int or ndarray of ints `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. See Also -------- random.randint : Similar to `random_integers`, only for the half-open interval [`low`, `high`), and 0 is the lowest value if `high` is omitted. Notes ----- To sample from N evenly spaced floating-point numbers between a and b, use:: a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.) Examples -------- >>> np.random.random_integers(5) 4 >>> type(np.random.random_integers(5)) >>> np.random.random_integers(5, size=(3,2)) array([[5, 4], [3, 3], [4, 5]]) Choose five random numbers from the set of five evenly-spaced numbers between 0 and 2.5, inclusive (*i.e.*, from the set :math:`{0, 5/8, 10/8, 15/8, 20/8}`): >>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4. array([ 0.625, 1.25 , 0.625, 0.625, 2.5 ]) Roll two six sided dice 1000 times and sum the results: >>> d1 = np.random.random_integers(1, 6, 1000) >>> d2 = np.random.random_integers(1, 6, 1000) >>> dsums = d1 + d2 Display results as a histogram: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(dsums, 11, normed=True) >>> plt.show() randn(d0, d1, ..., dn) Return a sample (or samples) from the "standard normal" distribution. If positive, int_like or int-convertible arguments are provided, `randn` generates an array of shape ``(d0, d1, ..., dn)``, filled with random floats sampled from a univariate "normal" (Gaussian) distribution of mean 0 and variance 1 (if any of the :math:`d_i` are floats, they are first converted to integers by truncation). A single float randomly sampled from the distribution is returned if no argument is provided. This is a convenience function. If you want an interface that takes a tuple as the first argument, use `numpy.random.standard_normal` instead. Parameters ---------- d0, d1, ..., dn : int, optional The dimensions of the returned array, should be all positive. If no argument is given a single Python float is returned. Returns ------- Z : ndarray or float A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from the standard normal distribution, or a single such float if no parameters were supplied. See Also -------- random.standard_normal : Similar, but takes a tuple as its argument. Notes ----- For random samples from :math:`N(\mu, \sigma^2)`, use: ``sigma * np.random.randn(...) + mu`` Examples -------- >>> np.random.randn() 2.1923875335537315 #random Two-by-four array of samples from N(3, 6.25): >>> 2.5 * np.random.randn(2, 4) + 3 array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], #random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) #random rand(d0, d1, ..., dn) Random values in a given shape. Create an array of the given shape and populate it with random samples from a uniform distribution over ``[0, 1)``. Parameters ---------- d0, d1, ..., dn : int, optional The dimensions of the returned array, should all be positive. If no argument is given a single Python float is returned. Returns ------- out : ndarray, shape ``(d0, d1, ..., dn)`` Random values. See Also -------- random Notes ----- This is a convenience function. If you want an interface that takes a shape-tuple as the first argument, refer to np.random.random_sample . Examples -------- >>> np.random.rand(3,2) array([[ 0.14022471, 0.96360618], #random [ 0.37601032, 0.25528411], #random [ 0.49313049, 0.94909878]]) #random uniform(low=0.0, high=1.0, size=None) Draw samples from a uniform distribution. Samples are uniformly distributed over the half-open interval ``[low, high)`` (includes low, but excludes high). In other words, any value within the given interval is equally likely to be drawn by `uniform`. Parameters ---------- low : float or array_like of floats, optional Lower boundary of the output interval. All values generated will be greater than or equal to low. The default value is 0. high : float or array_like of floats Upper boundary of the output interval. All values generated will be less than high. The default value is 1.0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``low`` and ``high`` are both scalars. Otherwise, ``np.broadcast(low, high).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized uniform distribution. See Also -------- randint : Discrete uniform distribution, yielding integers. random_integers : Discrete uniform distribution over the closed interval ``[low, high]``. random_sample : Floats uniformly distributed over ``[0, 1)``. random : Alias for `random_sample`. rand : Convenience function that accepts dimensions as input, e.g., ``rand(2,2)`` would generate a 2-by-2 array of floats, uniformly distributed over ``[0, 1)``. Notes ----- The probability density function of the uniform distribution is .. math:: p(x) = \frac{1}{b - a} anywhere within the interval ``[a, b)``, and zero elsewhere. When ``high`` == ``low``, values of ``low`` will be returned. If ``high`` < ``low``, the results are officially undefined and may eventually raise an error, i.e. do not rely on this function to behave when passed arguments satisfying that inequality condition. Examples -------- Draw samples from the distribution: >>> s = np.random.uniform(-1,0,1000) All values are within the given interval: >>> np.all(s >= -1) True >>> np.all(s < 0) True Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 15, normed=True) >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r') >>> plt.show() choice(a, size=None, replace=True, p=None) Generates a random sample from a given 1-D array .. versionadded:: 1.7.0 Parameters ----------- a : 1-D array-like or int If an ndarray, a random sample is generated from its elements. If an int, the random sample is generated as if a were np.arange(a) size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. replace : boolean, optional Whether the sample is with or without replacement p : 1-D array-like, optional The probabilities associated with each entry in a. If not given the sample assumes a uniform distribution over all entries in a. Returns -------- samples : single item or ndarray The generated random samples Raises ------- ValueError If a is an int and less than zero, if a or p are not 1-dimensional, if a is an array-like of size 0, if p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the sample size is greater than the population size See Also --------- randint, shuffle, permutation Examples --------- Generate a uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3) array([0, 3, 4]) >>> #This is equivalent to np.random.randint(0,5,3) Generate a non-uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) array([3, 3, 0]) Generate a uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False) array([3,1,0]) >>> #This is equivalent to np.random.permutation(np.arange(5))[:3] Generate a non-uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) array([2, 3, 0]) Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance: >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher'] >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3]) array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], dtype='|S11') bytes(length) Return random bytes. Parameters ---------- length : int Number of random bytes. Returns ------- out : str String of length `length`. Examples -------- >>> np.random.bytes(10) ' eh\x85\x022SZ\xbf\xa4' #random randint(low, high=None, size=None, dtype='l') Return random integers from `low` (inclusive) to `high` (exclusive). Return random integers from the "discrete uniform" distribution of the specified dtype in the "half-open" interval [`low`, `high`). If `high` is None (the default), then results are from [0, `low`). Parameters ---------- low : int Lowest (signed) integer to be drawn from the distribution (unless ``high=None``, in which case this parameter is one above the *highest* such integer). high : int, optional If provided, one above the largest (signed) integer to be drawn from the distribution (see above for behavior if ``high=None``). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result. All dtypes are determined by their name, i.e., 'int64', 'int', etc, so byteorder is not available and a specific precision may have different C types depending on the platform. The default value is 'np.int'. .. versionadded:: 1.11.0 Returns ------- out : int or ndarray of ints `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. See Also -------- random.random_integers : similar to `randint`, only for the closed interval [`low`, `high`], and 1 is the lowest value if `high` is omitted. In particular, this other one is the one to use to generate uniformly distributed discrete non-integers. Examples -------- >>> np.random.randint(2, size=10) array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) >>> np.random.randint(1, size=10) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) Generate a 2 x 4 array of ints between 0 and 4, inclusive: >>> np.random.randint(5, size=(2, 4)) array([[4, 0, 2, 1], [3, 2, 2, 0]]) tomaxint(size=None) Random integers between 0 and ``sys.maxint``, inclusive. Return a sample of uniformly distributed random integers in the interval [0, ``sys.maxint``]. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : ndarray Drawn samples, with shape `size`. See Also -------- randint : Uniform sampling over a given half-open interval of integers. random_integers : Uniform sampling over a given closed interval of integers. Examples -------- >>> RS = np.random.mtrand.RandomState() # need a RandomState object >>> RS.tomaxint((2,2,2)) array([[[1170048599, 1600360186], [ 739731006, 1947757578]], [[1871712945, 752307660], [1601631370, 1479324245]]]) >>> import sys >>> sys.maxint 2147483647 >>> RS.tomaxint((2,2,2)) < sys.maxint array([[[ True, True], [ True, True]], [[ True, True], [ True, True]]], dtype=bool) random_sample(size=None) Return random floats in the half-open interval [0.0, 1.0). Results are from the "continuous uniform" distribution over the stated interval. To sample :math:`Unif[a, b), b > a` multiply the output of `random_sample` by `(b-a)` and add `a`:: (b - a) * random_sample() + a Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : float or ndarray of floats Array of random floats of shape `size` (unless ``size=None``, in which case a single float is returned). Examples -------- >>> np.random.random_sample() 0.47108547995356098 >>> type(np.random.random_sample()) >>> np.random.random_sample((5,)) array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) Three-by-two array of random numbers from [-5, 0): >>> 5 * np.random.random_sample((3, 2)) - 5 array([[-3.99149989, -0.52338984], [-2.99091858, -0.79479508], [-1.23204345, -1.75224494]]) set_state(state) Set the internal state of the generator from a tuple. For use if one has reason to manually (re-)set the internal state of the "Mersenne Twister"[1]_ pseudo-random number generating algorithm. Parameters ---------- state : tuple(str, ndarray of 624 uints, int, int, float) The `state` tuple has the following items: 1. the string 'MT19937', specifying the Mersenne Twister algorithm. 2. a 1-D array of 624 unsigned integers ``keys``. 3. an integer ``pos``. 4. an integer ``has_gauss``. 5. a float ``cached_gaussian``. Returns ------- out : None Returns 'None' on success. See Also -------- get_state Notes ----- `set_state` and `get_state` are not needed to work with any of the random distributions in NumPy. If the internal state is manually altered, the user should know exactly what he/she is doing. For backwards compatibility, the form (str, array of 624 uints, int) is also accepted although it is missing some information about the cached Gaussian value: ``state = ('MT19937', keys, pos)``. References ---------- .. [1] M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator," *ACM Trans. on Modeling and Computer Simulation*, Vol. 8, No. 1, pp. 3-30, Jan. 1998. get_state() Return a tuple representing the internal state of the generator. For more details, see `set_state`. Returns ------- out : tuple(str, ndarray of 624 uints, int, int, float) The returned tuple has the following items: 1. the string 'MT19937'. 2. a 1-D array of 624 unsigned integer keys. 3. an integer ``pos``. 4. an integer ``has_gauss``. 5. a float ``cached_gaussian``. See Also -------- set_state Notes ----- `set_state` and `get_state` are not needed to work with any of the random distributions in NumPy. If the internal state is manually altered, the user should know exactly what he/she is doing. seed(seed=None) Seed the generator. This method is called when `RandomState` is initialized. It can be called again to re-seed the generator. For details, see `RandomState`. Parameters ---------- seed : int or array_like, optional Seed for `RandomState`. Must be convertible to 32 bit unsigned integers. See Also -------- RandomState _rand_uint64(low, high, size, rngstate) Return random np.uint64 integers between ``low`` and ``high``, inclusive. Return random integers from the "discrete uniform" distribution in the closed interval [``low``, ``high``). On entry the arguments are presumed to have been validated for size and order for the np.uint64 type. Parameters ---------- low : int Lowest (signed) integer to be drawn from the distribution. high : int Highest (signed) integer to be drawn from the distribution. size : int or tuple of ints Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. rngstate : encapsulated pointer to rk_state The specific type depends on the python version. In Python 2 it is a PyCObject, in Python 3 a PyCapsule object. Returns ------- out : python integer or ndarray of np.uint64 `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. _rand_uint32(low, high, size, rngstate) Return random np.uint32 integers between ``low`` and ``high``, inclusive. Return random integers from the "discrete uniform" distribution in the closed interval [``low``, ``high``). On entry the arguments are presumed to have been validated for size and order for the np.uint32 type. Parameters ---------- low : int Lowest (signed) integer to be drawn from the distribution. high : int Highest (signed) integer to be drawn from the distribution. size : int or tuple of ints Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. rngstate : encapsulated pointer to rk_state The specific type depends on the python version. In Python 2 it is a PyCObject, in Python 3 a PyCapsule object. Returns ------- out : python integer or ndarray of np.uint32 `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. _rand_uint16(low, high, size, rngstate) Return random np.uint16 integers between ``low`` and ``high``, inclusive. Return random integers from the "discrete uniform" distribution in the closed interval [``low``, ``high``). On entry the arguments are presumed to have been validated for size and order for the np.uint16 type. Parameters ---------- low : int Lowest (signed) integer to be drawn from the distribution. high : int Highest (signed) integer to be drawn from the distribution. size : int or tuple of ints Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. rngstate : encapsulated pointer to rk_state The specific type depends on the python version. In Python 2 it is a PyCObject, in Python 3 a PyCapsule object. Returns ------- out : python integer or ndarray of np.uint16 `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. _rand_uint8(low, high, size, rngstate) Return random np.uint8 integers between ``low`` and ``high``, inclusive. Return random integers from the "discrete uniform" distribution in the closed interval [``low``, ``high``). On entry the arguments are presumed to have been validated for size and order for the np.uint8 type. Parameters ---------- low : int Lowest (signed) integer to be drawn from the distribution. high : int Highest (signed) integer to be drawn from the distribution. size : int or tuple of ints Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. rngstate : encapsulated pointer to rk_state The specific type depends on the python version. In Python 2 it is a PyCObject, in Python 3 a PyCapsule object. Returns ------- out : python integer or ndarray of np.uint8 `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. _rand_int64(low, high, size, rngstate) Return random np.int64 integers between ``low`` and ``high``, inclusive. Return random integers from the "discrete uniform" distribution in the closed interval [``low``, ``high``). On entry the arguments are presumed to have been validated for size and order for the np.int64 type. Parameters ---------- low : int Lowest (signed) integer to be drawn from the distribution. high : int Highest (signed) integer to be drawn from the distribution. size : int or tuple of ints Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. rngstate : encapsulated pointer to rk_state The specific type depends on the python version. In Python 2 it is a PyCObject, in Python 3 a PyCapsule object. Returns ------- out : python integer or ndarray of np.int64 `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. _rand_int32(low, high, size, rngstate) Return random np.int32 integers between ``low`` and ``high``, inclusive. Return random integers from the "discrete uniform" distribution in the closed interval [``low``, ``high``). On entry the arguments are presumed to have been validated for size and order for the np.int32 type. Parameters ---------- low : int Lowest (signed) integer to be drawn from the distribution. high : int Highest (signed) integer to be drawn from the distribution. size : int or tuple of ints Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. rngstate : encapsulated pointer to rk_state The specific type depends on the python version. In Python 2 it is a PyCObject, in Python 3 a PyCapsule object. Returns ------- out : python integer or ndarray of np.int32 `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. _rand_int16(low, high, size, rngstate) Return random np.int16 integers between ``low`` and ``high``, inclusive. Return random integers from the "discrete uniform" distribution in the closed interval [``low``, ``high``). On entry the arguments are presumed to have been validated for size and order for the np.int16 type. Parameters ---------- low : int Lowest (signed) integer to be drawn from the distribution. high : int Highest (signed) integer to be drawn from the distribution. size : int or tuple of ints Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. rngstate : encapsulated pointer to rk_state The specific type depends on the python version. In Python 2 it is a PyCObject, in Python 3 a PyCapsule object. Returns ------- out : python integer or ndarray of np.int16 `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. _rand_int8(low, high, size, rngstate) Return random np.int8 integers between ``low`` and ``high``, inclusive. Return random integers from the "discrete uniform" distribution in the closed interval [``low``, ``high``). On entry the arguments are presumed to have been validated for size and order for the np.int8 type. Parameters ---------- low : int Lowest (signed) integer to be drawn from the distribution. high : int Highest (signed) integer to be drawn from the distribution. size : int or tuple of ints Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. rngstate : encapsulated pointer to rk_state The specific type depends on the python version. In Python 2 it is a PyCObject, in Python 3 a PyCapsule object. Returns ------- out : python integer or ndarray of np.int8 `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. _rand_bool(low, high, size, rngstate) Return random np.bool_ integers between ``low`` and ``high``, inclusive. Return random integers from the "discrete uniform" distribution in the closed interval [``low``, ``high``). On entry the arguments are presumed to have been validated for size and order for the np.bool_ type. Parameters ---------- low : int Lowest (signed) integer to be drawn from the distribution. high : int Highest (signed) integer to be drawn from the distribution. size : int or tuple of ints Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. rngstate : encapsulated pointer to rk_state The specific type depends on the python version. In Python 2 it is a PyCObject, in Python 3 a PyCapsule object. Returns ------- out : python integer or ndarray of np.bool_ `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. multivariate_normal__RandomState_ctorDeprecationWarningnegative_binomial_shape_from_sizestandard_normalstandard_cauchyrandom_integerspoisson_lam_maxdummy_threadingstandard_gammahypergeometricRuntimeWarningrandom_samplegreater_equalcount_nonzero_randint_typeOverflowErrorsearchsortedreturn_indexnoncentral_f_rand_uint64_rand_uint32_rand_uint16permutationmultinomialexponentialcheck_valid_rand_uint8_rand_int64_rand_int32_rand_int16ImportErrortriangularstandard_tlogical_orless_equalissubdtypeempty_likearray_data_rand_int8_rand_bool__import__ValueErrorthreadingset_statelogserieslognormalget_stategeometricdirichletchisquarebroadcast__enter__TypeErrorExceptionwarningsvonmisessubtractrngstatereversedrayleighoperatorlogisticitemsizeisfinitefloatingbinomialallclose__test____main____exit__weibulluniformstridessignbitshufflereshapereplacerandintpoissonnsamplendarraylaplaceintegergreaterfloat64castingasarrayMT19937unsafeuniqueuint64uint32uint16reducerandomparetonormalmtrandignoregumbelformatcumsumctypeschoiceastypearangezerosuint8statesigmashapescalerightravelrangerandnraisepvalspowernumpyngoodkappaisnanint64int32int16indexiinfogammafinfoequalemptydtypedfnumdfdenbytesbool_arrayalpha_randzipfwarnwalduinttakesqrtsortsizesideseedsafertolrandprodnoncndimnbadnamemodemeanlonglessleftitemintpint8highdatacopyboolbetaatolLocktolsvdrngoutoffmaxlowloclamintepsdotcovcntbufanyalladdnpmudf permutation(x) Randomly permute a sequence, or return a permuted range. If `x` is a multi-dimensional array, it is only shuffled along its first index. Parameters ---------- x : int or array_like If `x` is an integer, randomly permute ``np.arange(x)``. If `x` is an array, make a copy and shuffle the elements randomly. Returns ------- out : ndarray Permuted sequence or array range. Examples -------- >>> np.random.permutation(10) array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) >>> np.random.permutation([1, 4, 9, 12, 15]) array([15, 1, 9, 4, 12]) >>> arr = np.arange(9).reshape((3, 3)) >>> np.random.permutation(arr) array([[6, 7, 8], [0, 1, 2], [3, 4, 5]]) RandomState.permutation (line 4847) shuffle(x) Modify a sequence in-place by shuffling its contents. This function only shuffles the array along the first axis of a multi-dimensional array. The order of sub-arrays is changed but their contents remains the same. Parameters ---------- x : array_like The array or list to be shuffled. Returns ------- None Examples -------- >>> arr = np.arange(10) >>> np.random.shuffle(arr) >>> arr [1 7 5 2 9 4 3 6 0 8] Multi-dimensional arrays are only shuffled along the first axis: >>> arr = np.arange(9).reshape((3, 3)) >>> np.random.shuffle(arr) >>> arr array([[3, 4, 5], [6, 7, 8], [0, 1, 2]]) RandomState.shuffle (line 4759) dirichlet(alpha, size=None) Draw samples from the Dirichlet distribution. Draw `size` samples of dimension k from a Dirichlet distribution. A Dirichlet-distributed random variable can be seen as a multivariate generalization of a Beta distribution. Dirichlet pdf is the conjugate prior of a multinomial in Bayesian inference. Parameters ---------- alpha : array Parameter of the distribution (k dimension for sample of dimension k). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- samples : ndarray, The drawn samples, of shape (size, alpha.ndim). Notes ----- .. math:: X \approx \prod_{i=1}^{k}{x^{\alpha_i-1}_i} Uses the following property for computation: for each dimension, draw a random sample y_i from a standard gamma generator of shape `alpha_i`, then :math:`X = \frac{1}{\sum_{i=1}^k{y_i}} (y_1, \ldots, y_n)` is Dirichlet distributed. References ---------- .. [1] David McKay, "Information Theory, Inference and Learning Algorithms," chapter 23, http://www.inference.phy.cam.ac.uk/mackay/ .. [2] Wikipedia, "Dirichlet distribution", http://en.wikipedia.org/wiki/Dirichlet_distribution Examples -------- Taking an example cited in Wikipedia, this distribution can be used if one wanted to cut strings (each of initial length 1.0) into K pieces with different lengths, where each piece had, on average, a designated average length, but allowing some variation in the relative sizes of the pieces. >>> s = np.random.dirichlet((10, 5, 3), 20).transpose() >>> plt.barh(range(20), s[0]) >>> plt.barh(range(20), s[1], left=s[0], color='g') >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r') >>> plt.title("Lengths of Strings") RandomState.dirichlet (line 4643) multinomial(n, pvals, size=None) Draw samples from a multinomial distribution. The multinomial distribution is a multivariate generalisation of the binomial distribution. Take an experiment with one of ``p`` possible outcomes. An example of such an experiment is throwing a dice, where the outcome can be 1 through 6. Each sample drawn from the distribution represents `n` such experiments. Its values, ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the outcome was ``i``. Parameters ---------- n : int Number of experiments. pvals : sequence of floats, length p Probabilities of each of the ``p`` different outcomes. These should sum to 1 (however, the last element is always assumed to account for the remaining probability, as long as ``sum(pvals[:-1]) <= 1)``. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : ndarray The drawn samples, of shape *size*, if that was provided. If not, the shape is ``(N,)``. In other words, each entry ``out[i,j,...,:]`` is an N-dimensional value drawn from the distribution. Examples -------- Throw a dice 20 times: >>> np.random.multinomial(20, [1/6.]*6, size=1) array([[4, 1, 7, 5, 2, 1]]) It landed 4 times on 1, once on 2, etc. Now, throw the dice 20 times, and 20 times again: >>> np.random.multinomial(20, [1/6.]*6, size=2) array([[3, 4, 3, 3, 4, 3], [2, 4, 3, 4, 0, 7]]) For the first run, we threw 3 times 1, 4 times 2, etc. For the second, we threw 2 times 1, 4 times 2, etc. A loaded die is more likely to land on number 6: >>> np.random.multinomial(100, [1/7.]*5 + [2/7.]) array([11, 16, 14, 17, 16, 26]) The probability inputs should be normalized. As an implementation detail, the value of the last entry is ignored and assumed to take up any leftover probability mass, but this should not be relied on. A biased coin which has twice as much weight on one side as on the other should be sampled like so: >>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3]) # RIGHT array([38, 62]) not like: >>> np.random.multinomial(100, [1.0, 2.0]) # WRONG array([100, 0]) RandomState.multinomial (line 4530) multivariate_normal(mean, cov[, size, check_valid, tol]) Draw random samples from a multivariate normal distribution. The multivariate normal, multinormal or Gaussian distribution is a generalization of the one-dimensional normal distribution to higher dimensions. Such a distribution is specified by its mean and covariance matrix. These parameters are analogous to the mean (average or "center") and variance (standard deviation, or "width," squared) of the one-dimensional normal distribution. Parameters ---------- mean : 1-D array_like, of length N Mean of the N-dimensional distribution. cov : 2-D array_like, of shape (N, N) Covariance matrix of the distribution. It must be symmetric and positive-semidefinite for proper sampling. size : int or tuple of ints, optional Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are generated, and packed in an `m`-by-`n`-by-`k` arrangement. Because each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``. If no shape is specified, a single (`N`-D) sample is returned. check_valid : { 'warn', 'raise', 'ignore' }, optional Behavior when the covariance matrix is not positive semidefinite. tol : float, optional Tolerance when checking the singular values in covariance matrix. Returns ------- out : ndarray The drawn samples, of shape *size*, if that was provided. If not, the shape is ``(N,)``. In other words, each entry ``out[i,j,...,:]`` is an N-dimensional value drawn from the distribution. Notes ----- The mean is a coordinate in N-dimensional space, which represents the location where samples are most likely to be generated. This is analogous to the peak of the bell curve for the one-dimensional or univariate normal distribution. Covariance indicates the level to which two variables vary together. From the multivariate normal distribution, we draw N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]`. The covariance matrix element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its "spread"). Instead of specifying the full covariance matrix, popular approximations include: - Spherical covariance (`cov` is a multiple of the identity matrix) - Diagonal covariance (`cov` has non-negative elements, and only on the diagonal) This geometrical property can be seen in two dimensions by plotting generated data-points: >>> mean = [0, 0] >>> cov = [[1, 0], [0, 100]] # diagonal covariance Diagonal covariance means that points are oriented along x or y-axis: >>> import matplotlib.pyplot as plt >>> x, y = np.random.multivariate_normal(mean, cov, 5000).T >>> plt.plot(x, y, 'x') >>> plt.axis('equal') >>> plt.show() Note that the covariance matrix must be positive semidefinite (a.k.a. nonnegative-definite). Otherwise, the behavior of this method is undefined and backwards compatibility is not guaranteed. References ---------- .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic Processes," 3rd ed., New York: McGraw-Hill, 1991. .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern Classification," 2nd ed., New York: Wiley, 2001. Examples -------- >>> mean = (1, 2) >>> cov = [[1, 0], [0, 1]] >>> x = np.random.multivariate_normal(mean, cov, (3, 3)) >>> x.shape (3, 3, 2) The following is probably true, given that 0.6 is roughly twice the standard deviation: >>> list((x[0,0,:] - mean) < 0.6) [True, True] RandomState.multivariate_normal (line 4369) logseries(p, size=None) Draw samples from a logarithmic series distribution. Samples are drawn from a log series distribution with specified shape parameter, 0 < ``p`` < 1. Parameters ---------- p : float or array_like of floats Shape parameter for the distribution. Must be in the range (0, 1). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logarithmic series distribution. See Also -------- scipy.stats.logser : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Log Series distribution is .. math:: P(k) = \frac{-p^k}{k \ln(1-p)}, where p = probability. The log series distribution is frequently used to represent species richness and occurrence, first proposed by Fisher, Corbet, and Williams in 1943 [2]. It may also be used to model the numbers of occupants seen in cars [3]. References ---------- .. [1] Buzas, Martin A.; Culver, Stephen J., Understanding regional species diversity through the log series distribution of occurrences: BIODIVERSITY RESEARCH Diversity & Distributions, Volume 5, Number 5, September 1999 , pp. 187-195(9). .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12:42-58. .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small Data Sets, CRC Press, 1994. .. [4] Wikipedia, "Logarithmic distribution", http://en.wikipedia.org/wiki/Logarithmic_distribution Examples -------- Draw samples from the distribution: >>> a = .6 >>> s = np.random.logseries(a, 10000) >>> count, bins, ignored = plt.hist(s) # plot against distribution >>> def logseries(k, p): ... return -p**k/(k*log(1-p)) >>> plt.plot(bins, logseries(bins, a)*count.max()/ logseries(bins, a).max(), 'r') >>> plt.show() RandomState.logseries (line 4272) hypergeometric(ngood, nbad, nsample, size=None) Draw samples from a Hypergeometric distribution. Samples are drawn from a hypergeometric distribution with specified parameters, ngood (ways to make a good selection), nbad (ways to make a bad selection), and nsample = number of items sampled, which is less than or equal to the sum ngood + nbad. Parameters ---------- ngood : int or array_like of ints Number of ways to make a good selection. Must be nonnegative. nbad : int or array_like of ints Number of ways to make a bad selection. Must be nonnegative. nsample : int or array_like of ints Number of items sampled. Must be at least 1 and at most ``ngood + nbad``. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``ngood``, ``nbad``, and ``nsample`` are all scalars. Otherwise, ``np.broadcast(ngood, nbad, nsample).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized hypergeometric distribution. See Also -------- scipy.stats.hypergeom : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Hypergeometric distribution is .. math:: P(x) = \frac{\binom{m}{n}\binom{N-m}{n-x}}{\binom{N}{n}}, where :math:`0 \le x \le m` and :math:`n+m-N \le x \le n` for P(x) the probability of x successes, n = ngood, m = nbad, and N = number of samples. Consider an urn with black and white marbles in it, ngood of them black and nbad are white. If you draw nsample balls without replacement, then the hypergeometric distribution describes the distribution of black balls in the drawn sample. Note that this distribution is very similar to the binomial distribution, except that in this case, samples are drawn without replacement, whereas in the Binomial case samples are drawn with replacement (or the sample space is infinite). As the sample space becomes large, this distribution approaches the binomial. References ---------- .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden and Quigley, 1972. .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/HypergeometricDistribution.html .. [3] Wikipedia, "Hypergeometric distribution", http://en.wikipedia.org/wiki/Hypergeometric_distribution Examples -------- Draw samples from the distribution: >>> ngood, nbad, nsamp = 100, 2, 10 # number of good, number of bad, and number of samples >>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000) >>> hist(s) # note that it is very unlikely to grab both bad items Suppose you have an urn with 15 white and 15 black marbles. If you pull 15 marbles at random, how likely is it that 12 or more of them are one color? >>> s = np.random.hypergeometric(15, 15, 15, 100000) >>> sum(s>=12)/100000. + sum(s<=3)/100000. # answer = 0.003 ... pretty unlikely! RandomState.hypergeometric (line 4150) geometric(p, size=None) Draw samples from the geometric distribution. Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an experiment is flipping a coin). The geometric distribution models the number of trials that must be run in order to achieve success. It is therefore supported on the positive integers, ``k = 1, 2, ...``. The probability mass function of the geometric distribution is .. math:: f(k) = (1 - p)^{k - 1} p where `p` is the probability of success of an individual trial. Parameters ---------- p : float or array_like of floats The probability of success of an individual trial. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized geometric distribution. Examples -------- Draw ten thousand values from the geometric distribution, with the probability of an individual success equal to 0.35: >>> z = np.random.geometric(p=0.35, size=10000) How many trials succeeded after a single run? >>> (z == 1).sum() / 10000. 0.34889999999999999 #random RandomState.geometric (line 4082) zipf(a, size=None) Draw samples from a Zipf distribution. Samples are drawn from a Zipf distribution with specified parameter `a` > 1. The Zipf distribution (also known as the zeta distribution) is a continuous probability distribution that satisfies Zipf's law: the frequency of an item is inversely proportional to its rank in a frequency table. Parameters ---------- a : float or array_like of floats Distribution parameter. Should be greater than 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Zipf distribution. See Also -------- scipy.stats.zipf : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the Zipf distribution is .. math:: p(x) = \frac{x^{-a}}{\zeta(a)}, where :math:`\zeta` is the Riemann Zeta function. It is named for the American linguist George Kingsley Zipf, who noted that the frequency of any word in a sample of a language is inversely proportional to its rank in the frequency table. References ---------- .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative Frequency in Language," Cambridge, MA: Harvard Univ. Press, 1932. Examples -------- Draw samples from the distribution: >>> a = 2. # parameter >>> s = np.random.zipf(a, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy import special Truncate s values at 50 so plot is interesting: >>> count, bins, ignored = plt.hist(s[s<50], 50, normed=True) >>> x = np.arange(1., 50.) >>> y = x**(-a) / special.zetac(a) >>> plt.plot(x, y/max(y), linewidth=2, color='r') >>> plt.show() RandomState.zipf (line 3991) poisson(lam=1.0, size=None) Draw samples from a Poisson distribution. The Poisson distribution is the limit of the binomial distribution for large N. Parameters ---------- lam : float or array_like of floats Expectation of interval, should be >= 0. A sequence of expectation intervals must be broadcastable over the requested size. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``lam`` is a scalar. Otherwise, ``np.array(lam).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Poisson distribution. Notes ----- The Poisson distribution .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!} For events with an expected separation :math:`\lambda` the Poisson distribution :math:`f(k; \lambda)` describes the probability of :math:`k` events occurring within the observed interval :math:`\lambda`. Because the output is limited to the range of the C long type, a ValueError is raised when `lam` is within 10 sigma of the maximum representable value. References ---------- .. [1] Weisstein, Eric W. "Poisson Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html .. [2] Wikipedia, "Poisson distribution", http://en.wikipedia.org/wiki/Poisson_distribution Examples -------- Draw samples from the distribution: >>> import numpy as np >>> s = np.random.poisson(5, 10000) Display histogram of the sample: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 14, normed=True) >>> plt.show() Draw each 100 values for lambda 100 and 500: >>> s = np.random.poisson(lam=(100., 500.), size=(100, 2)) RandomState.poisson (line 3903) negative_binomial(n, p, size=None) Draw samples from a negative binomial distribution. Samples are drawn from a negative binomial distribution with specified parameters, `n` trials and `p` probability of success where `n` is an integer > 0 and `p` is in the interval [0, 1]. Parameters ---------- n : int or array_like of ints Parameter of the distribution, > 0. Floats are also accepted, but they will be truncated to integers. p : float or array_like of floats Parameter of the distribution, >= 0 and <=1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``n`` and ``p`` are both scalars. Otherwise, ``np.broadcast(n, p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized negative binomial distribution, where each sample is equal to N, the number of trials it took to achieve n - 1 successes, N - (n - 1) failures, and a success on the, (N + n)th trial. Notes ----- The probability density for the negative binomial distribution is .. math:: P(N;n,p) = \binom{N+n-1}{n-1}p^{n}(1-p)^{N}, where :math:`n-1` is the number of successes, :math:`p` is the probability of success, and :math:`N+n-1` is the number of trials. The negative binomial distribution gives the probability of n-1 successes and N failures in N+n-1 trials, and success on the (N+n)th trial. If one throws a die repeatedly until the third time a "1" appears, then the probability distribution of the number of non-"1"s that appear before the third "1" is a negative binomial distribution. References ---------- .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/NegativeBinomialDistribution.html .. [2] Wikipedia, "Negative binomial distribution", http://en.wikipedia.org/wiki/Negative_binomial_distribution Examples -------- Draw samples from the distribution: A real world example. A company drills wild-cat oil exploration wells, each with an estimated probability of success of 0.1. What is the probability of having one success for each successive well, that is what is the probability of a single success after drilling 5 wells, after 6 wells, etc.? >>> s = np.random.negative_binomial(1, 0.1, 100000) >>> for i in range(1, 11): ... probability = sum(s>> n, p = 10, .5 # number of trials, probability of each trial >>> s = np.random.binomial(n, p, 1000) # result of flipping a coin 10 times, tested 1000 times. A real world example. A company drills 9 wild-cat oil exploration wells, each with an estimated probability of success of 0.1. All nine wells fail. What is the probability of that happening? Let's do 20,000 trials of the model, and count the number that generate zero positive results. >>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000. # answer = 0.38885, or 38%. RandomState.binomial (line 3686) triangular(left, mode, right, size=None) Draw samples from the triangular distribution over the interval ``[left, right]``. The triangular distribution is a continuous probability distribution with lower limit left, peak at mode, and upper limit right. Unlike the other distributions, these parameters directly define the shape of the pdf. Parameters ---------- left : float or array_like of floats Lower limit. mode : float or array_like of floats The value where the peak of the distribution occurs. The value should fulfill the condition ``left <= mode <= right``. right : float or array_like of floats Upper limit, should be larger than `left`. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``left``, ``mode``, and ``right`` are all scalars. Otherwise, ``np.broadcast(left, mode, right).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized triangular distribution. Notes ----- The probability density function for the triangular distribution is .. math:: P(x;l, m, r) = \begin{cases} \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\ \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\ 0& \text{otherwise}. \end{cases} The triangular distribution is often used in ill-defined problems where the underlying distribution is not known, but some knowledge of the limits and mode exists. Often it is used in simulations. References ---------- .. [1] Wikipedia, "Triangular distribution" http://en.wikipedia.org/wiki/Triangular_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200, ... normed=True) >>> plt.show() RandomState.triangular (line 3592) wald(mean, scale, size=None) Draw samples from a Wald, or inverse Gaussian, distribution. As the scale approaches infinity, the distribution becomes more like a Gaussian. Some references claim that the Wald is an inverse Gaussian with mean equal to 1, but this is by no means universal. The inverse Gaussian distribution was first studied in relationship to Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian because there is an inverse relationship between the time to cover a unit distance and distance covered in unit time. Parameters ---------- mean : float or array_like of floats Distribution mean, should be > 0. scale : float or array_like of floats Scale parameter, should be >= 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Wald distribution. Notes ----- The probability density function for the Wald distribution is .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^ \frac{-scale(x-mean)^2}{2\cdotp mean^2x} As noted above the inverse Gaussian distribution first arise from attempts to model Brownian motion. It is also a competitor to the Weibull for use in reliability modeling and modeling stock returns and interest rate processes. References ---------- .. [1] Brighton Webs Ltd., Wald Distribution, http://www.brighton-webs.co.uk/distributions/wald.asp .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian Distribution: Theory : Methodology, and Applications", CRC Press, 1988. .. [3] Wikipedia, "Wald distribution" http://en.wikipedia.org/wiki/Wald_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, normed=True) >>> plt.show() RandomState.wald (line 3505) rayleigh(scale=1.0, size=None) Draw samples from a Rayleigh distribution. The :math:`\chi` and Weibull distributions are generalizations of the Rayleigh. Parameters ---------- scale : float or array_like of floats, optional Scale, also equals the mode. Should be >= 0. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``scale`` is a scalar. Otherwise, ``np.array(scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Rayleigh distribution. Notes ----- The probability density function for the Rayleigh distribution is .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}} The Rayleigh distribution would arise, for example, if the East and North components of the wind velocity had identical zero-mean Gaussian distributions. Then the wind speed would have a Rayleigh distribution. References ---------- .. [1] Brighton Webs Ltd., "Rayleigh Distribution," http://www.brighton-webs.co.uk/distributions/rayleigh.asp .. [2] Wikipedia, "Rayleigh distribution" http://en.wikipedia.org/wiki/Rayleigh_distribution Examples -------- Draw values from the distribution and plot the histogram >>> values = hist(np.random.rayleigh(3, 100000), bins=200, normed=True) Wave heights tend to follow a Rayleigh distribution. If the mean wave height is 1 meter, what fraction of waves are likely to be larger than 3 meters? >>> meanvalue = 1 >>> modevalue = np.sqrt(2 / np.pi) * meanvalue >>> s = np.random.rayleigh(modevalue, 1000000) The percentage of waves larger than 3 meters is: >>> 100.*sum(s>3)/1000000. 0.087300000000000003 RandomState.rayleigh (line 3426) lognormal(mean=0.0, sigma=1.0, size=None) Draw samples from a log-normal distribution. Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape. Note that the mean and standard deviation are not the values for the distribution itself, but of the underlying normal distribution it is derived from. Parameters ---------- mean : float or array_like of floats, optional Mean value of the underlying normal distribution. Default is 0. sigma : float or array_like of floats, optional Standard deviation of the underlying normal distribution. Should be greater than zero. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``sigma`` are both scalars. Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized log-normal distribution. See Also -------- scipy.stats.lognorm : probability density function, distribution, cumulative density function, etc. Notes ----- A variable `x` has a log-normal distribution if `log(x)` is normally distributed. The probability density function for the log-normal distribution is: .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})} where :math:`\mu` is the mean and :math:`\sigma` is the standard deviation of the normally distributed logarithm of the variable. A log-normal distribution results if a random variable is the *product* of a large number of independent, identically-distributed variables in the same way that a normal distribution results if the variable is the *sum* of a large number of independent, identically-distributed variables. References ---------- .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal Distributions across the Sciences: Keys and Clues," BioScience, Vol. 51, No. 5, May, 2001. http://stat.ethz.ch/~stahel/lognormal/bioscience.pdf .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme Values," Basel: Birkhauser Verlag, 2001, pp. 31-32. Examples -------- Draw samples from the distribution: >>> mu, sigma = 3., 1. # mean and standard deviation >>> s = np.random.lognormal(mu, sigma, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 100, normed=True, align='mid') >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, linewidth=2, color='r') >>> plt.axis('tight') >>> plt.show() Demonstrate that taking the products of random samples from a uniform distribution can be fit well by a log-normal probability density function. >>> # Generate a thousand samples: each is the product of 100 random >>> # values, drawn from a normal distribution. >>> b = [] >>> for i in range(1000): ... a = 10. + np.random.random(100) ... b.append(np.product(a)) >>> b = np.array(b) / np.min(b) # scale values to be positive >>> count, bins, ignored = plt.hist(b, 100, normed=True, align='mid') >>> sigma = np.std(np.log(b)) >>> mu = np.mean(np.log(b)) >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, color='r', linewidth=2) >>> plt.show() RandomState.lognormal (line 3302) logistic(loc=0.0, scale=1.0, size=None) Draw samples from a logistic distribution. Samples are drawn from a logistic distribution with specified parameters, loc (location or mean, also median), and scale (>0). Parameters ---------- loc : float or array_like of floats, optional Parameter of the distribution. Default is 0. scale : float or array_like of floats, optional Parameter of the distribution. Should be greater than zero. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logistic distribution. See Also -------- scipy.stats.logistic : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Logistic distribution is .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2}, where :math:`\mu` = location and :math:`s` = scale. The Logistic distribution is used in Extreme Value problems where it can act as a mixture of Gumbel distributions, in Epidemiology, and by the World Chess Federation (FIDE) where it is used in the Elo ranking system, assuming the performance of each player is a logistically distributed random variable. References ---------- .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of Extreme Values, from Insurance, Finance, Hydrology and Other Fields," Birkhauser Verlag, Basel, pp 132-133. .. [2] Weisstein, Eric W. "Logistic Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/LogisticDistribution.html .. [3] Wikipedia, "Logistic-distribution", http://en.wikipedia.org/wiki/Logistic_distribution Examples -------- Draw samples from the distribution: >>> loc, scale = 10, 1 >>> s = np.random.logistic(loc, scale, 10000) >>> count, bins, ignored = plt.hist(s, bins=50) # plot against distribution >>> def logist(x, loc, scale): ... return exp((loc-x)/scale)/(scale*(1+exp((loc-x)/scale))**2) >>> plt.plot(bins, logist(bins, loc, scale)*count.max()/\ ... logist(bins, loc, scale).max()) >>> plt.show() RandomState.logistic (line 3209) gumbel(loc=0.0, scale=1.0, size=None) Draw samples from a Gumbel distribution. Draw samples from a Gumbel distribution with specified location and scale. For more information on the Gumbel distribution, see Notes and References below. Parameters ---------- loc : float or array_like of floats, optional The location of the mode of the distribution. Default is 0. scale : float or array_like of floats, optional The scale parameter of the distribution. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Gumbel distribution. See Also -------- scipy.stats.gumbel_l scipy.stats.gumbel_r scipy.stats.genextreme weibull Notes ----- The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value Type I) distribution is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. The Gumbel is a special case of the Extreme Value Type I distribution for maximums from distributions with "exponential-like" tails. The probability density for the Gumbel distribution is .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/ \beta}}, where :math:`\mu` is the mode, a location parameter, and :math:`\beta` is the scale parameter. The Gumbel (named for German mathematician Emil Julius Gumbel) was used very early in the hydrology literature, for modeling the occurrence of flood events. It is also used for modeling maximum wind speed and rainfall rates. It is a "fat-tailed" distribution - the probability of an event in the tail of the distribution is larger than if one used a Gaussian, hence the surprisingly frequent occurrence of 100-year floods. Floods were initially modeled as a Gaussian process, which underestimated the frequency of extreme events. It is one of a class of extreme value distributions, the Generalized Extreme Value (GEV) distributions, which also includes the Weibull and Frechet. The function has a mean of :math:`\mu + 0.57721\beta` and a variance of :math:`\frac{\pi^2}{6}\beta^2`. References ---------- .. [1] Gumbel, E. J., "Statistics of Extremes," New York: Columbia University Press, 1958. .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme Values from Insurance, Finance, Hydrology and Other Fields," Basel: Birkhauser Verlag, 2001. Examples -------- Draw samples from the distribution: >>> mu, beta = 0, 0.1 # location and scale >>> s = np.random.gumbel(mu, beta, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, normed=True) >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp( -np.exp( -(bins - mu) /beta) ), ... linewidth=2, color='r') >>> plt.show() Show how an extreme value distribution can arise from a Gaussian process and compare to a Gaussian: >>> means = [] >>> maxima = [] >>> for i in range(0,1000) : ... a = np.random.normal(mu, beta, 1000) ... means.append(a.mean()) ... maxima.append(a.max()) >>> count, bins, ignored = plt.hist(maxima, 30, normed=True) >>> beta = np.std(maxima) * np.sqrt(6) / np.pi >>> mu = np.mean(maxima) - 0.57721*beta >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp(-np.exp(-(bins - mu)/beta)), ... linewidth=2, color='r') >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi)) ... * np.exp(-(bins - mu)**2 / (2 * beta**2)), ... linewidth=2, color='g') >>> plt.show() RandomState.gumbel (line 3078) laplace(loc=0.0, scale=1.0, size=None) Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale (decay). The Laplace distribution is similar to the Gaussian/normal distribution, but is sharper at the peak and has fatter tails. It represents the difference between two independent, identically distributed exponential random variables. Parameters ---------- loc : float or array_like of floats, optional The position, :math:`\mu`, of the distribution peak. Default is 0. scale : float or array_like of floats, optional :math:`\lambda`, the exponential decay. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Laplace distribution. Notes ----- It has the probability density function .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda} \exp\left(-\frac{|x - \mu|}{\lambda}\right). The first law of Laplace, from 1774, states that the frequency of an error can be expressed as an exponential function of the absolute magnitude of the error, which leads to the Laplace distribution. For many problems in economics and health sciences, this distribution seems to model the data better than the standard Gaussian distribution. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and Generalizations, " Birkhauser, 2001. .. [3] Weisstein, Eric W. "Laplace Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/LaplaceDistribution.html .. [4] Wikipedia, "Laplace distribution", http://en.wikipedia.org/wiki/Laplace_distribution Examples -------- Draw samples from the distribution >>> loc, scale = 0., 1. >>> s = np.random.laplace(loc, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, normed=True) >>> x = np.arange(-8., 8., .01) >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale) >>> plt.plot(x, pdf) Plot Gaussian for comparison: >>> g = (1/(scale * np.sqrt(2 * np.pi)) * ... np.exp(-(x - loc)**2 / (2 * scale**2))) >>> plt.plot(x,g) RandomState.laplace (line 2980) power(a, size=None) Draws samples in [0, 1] from a power distribution with positive exponent a - 1. Also known as the power function distribution. Parameters ---------- a : float or array_like of floats Parameter of the distribution. Should be greater than zero. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized power distribution. Raises ------ ValueError If a < 1. Notes ----- The probability density function is .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0. The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special case of the Beta distribution. It is used, for example, in modeling the over-reporting of insurance claims. References ---------- .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions in economics and actuarial sciences", Wiley, 2003. .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148: Dataplot Reference Manual, Volume 2: Let Subcommands and Library Functions", National Institute of Standards and Technology Handbook Series, June 2003. http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf Examples -------- Draw samples from the distribution: >>> a = 5. # shape >>> samples = 1000 >>> s = np.random.power(a, samples) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, bins=30) >>> x = np.linspace(0, 1, 100) >>> y = a*x**(a-1.) >>> normed_y = samples*np.diff(bins)[0]*y >>> plt.plot(x, normed_y) >>> plt.show() Compare the power function distribution to the inverse of the Pareto. >>> from scipy import stats >>> rvs = np.random.power(5, 1000000) >>> rvsp = np.random.pareto(5, 1000000) >>> xx = np.linspace(0,1,100) >>> powpdf = stats.powerlaw.pdf(xx,5) >>> plt.figure() >>> plt.hist(rvs, bins=50, normed=True) >>> plt.plot(xx,powpdf,'r-') >>> plt.title('np.random.power(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, normed=True) >>> plt.plot(xx,powpdf,'r-') >>> plt.title('inverse of 1 + np.random.pareto(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, normed=True) >>> plt.plot(xx,powpdf,'r-') >>> plt.title('inverse of stats.pareto(5)') RandomState.power (line 2869) weibull(a, size=None) Draw samples from a Weibull distribution. Draw samples from a 1-parameter Weibull distribution with the given shape parameter `a`. .. math:: X = (-ln(U))^{1/a} Here, U is drawn from the uniform distribution over (0,1]. The more common 2-parameter Weibull, including a scale parameter :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`. Parameters ---------- a : float or array_like of floats Shape of the distribution. Should be greater than zero. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Weibull distribution. See Also -------- scipy.stats.weibull_max scipy.stats.weibull_min scipy.stats.genextreme gumbel Notes ----- The Weibull (or Type III asymptotic extreme value distribution for smallest values, SEV Type III, or Rosin-Rammler distribution) is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. This class includes the Gumbel and Frechet distributions. The probability density for the Weibull distribution is .. math:: p(x) = \frac{a} {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a}, where :math:`a` is the shape and :math:`\lambda` the scale. The function has its peak (the mode) at :math:`\lambda(\frac{a-1}{a})^{1/a}`. When ``a = 1``, the Weibull distribution reduces to the exponential distribution. References ---------- .. [1] Waloddi Weibull, Royal Technical University, Stockholm, 1939 "A Statistical Theory Of The Strength Of Materials", Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939, Generalstabens Litografiska Anstalts Forlag, Stockholm. .. [2] Waloddi Weibull, "A Statistical Distribution Function of Wide Applicability", Journal Of Applied Mechanics ASME Paper 1951. .. [3] Wikipedia, "Weibull distribution", http://en.wikipedia.org/wiki/Weibull_distribution Examples -------- Draw samples from the distribution: >>> a = 5. # shape >>> s = np.random.weibull(a, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> x = np.arange(1,100.)/50. >>> def weib(x,n,a): ... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a) >>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000)) >>> x = np.arange(1,100.)/50. >>> scale = count.max()/weib(x, 1., 5.).max() >>> plt.plot(x, weib(x, 1., 5.)*scale) >>> plt.show() RandomState.weibull (line 2759) pareto(a, size=None) Draw samples from a Pareto II or Lomax distribution with specified shape. The Lomax or Pareto II distribution is a shifted Pareto distribution. The classical Pareto distribution can be obtained from the Lomax distribution by adding 1 and multiplying by the scale parameter ``m`` (see Notes). The smallest value of the Lomax distribution is zero while for the classical Pareto distribution it is ``mu``, where the standard Pareto distribution has location ``mu = 1``. Lomax can also be considered as a simplified version of the Generalized Pareto distribution (available in SciPy), with the scale set to one and the location set to zero. The Pareto distribution must be greater than zero, and is unbounded above. It is also known as the "80-20 rule". In this distribution, 80 percent of the weights are in the lowest 20 percent of the range, while the other 20 percent fill the remaining 80 percent of the range. Parameters ---------- a : float or array_like of floats Shape of the distribution. Should be greater than zero. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Pareto distribution. See Also -------- scipy.stats.lomax : probability density function, distribution or cumulative density function, etc. scipy.stats.genpareto : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Pareto distribution is .. math:: p(x) = \frac{am^a}{x^{a+1}} where :math:`a` is the shape and :math:`m` the scale. The Pareto distribution, named after the Italian economist Vilfredo Pareto, is a power law probability distribution useful in many real world problems. Outside the field of economics it is generally referred to as the Bradford distribution. Pareto developed the distribution to describe the distribution of wealth in an economy. It has also found use in insurance, web page access statistics, oil field sizes, and many other problems, including the download frequency for projects in Sourceforge [1]_. It is one of the so-called "fat-tailed" distributions. References ---------- .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of Sourceforge projects. .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne. .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme Values, Birkhauser Verlag, Basel, pp 23-30. .. [4] Wikipedia, "Pareto distribution", http://en.wikipedia.org/wiki/Pareto_distribution Examples -------- Draw samples from the distribution: >>> a, m = 3., 2. # shape and mode >>> s = (np.random.pareto(a, 1000) + 1) * m Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, 100, normed=True) >>> fit = a*m**a / bins**(a+1) >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r') >>> plt.show() RandomState.pareto (line 2649) vonmises(mu, kappa, size=None) Draw samples from a von Mises distribution. Samples are drawn from a von Mises distribution with specified mode (mu) and dispersion (kappa), on the interval [-pi, pi]. The von Mises distribution (also known as the circular normal distribution) is a continuous probability distribution on the unit circle. It may be thought of as the circular analogue of the normal distribution. Parameters ---------- mu : float or array_like of floats Mode ("center") of the distribution. kappa : float or array_like of floats Dispersion of the distribution, has to be >=0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mu`` and ``kappa`` are both scalars. Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized von Mises distribution. See Also -------- scipy.stats.vonmises : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the von Mises distribution is .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)}, where :math:`\mu` is the mode and :math:`\kappa` the dispersion, and :math:`I_0(\kappa)` is the modified Bessel function of order 0. The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now the Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in probability theory, aerodynamics, fluid mechanics, and philosophy of science. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] von Mises, R., "Mathematical Theory of Probability and Statistics", New York: Academic Press, 1964. Examples -------- Draw samples from the distribution: >>> mu, kappa = 0.0, 4.0 # mean and dispersion >>> s = np.random.vonmises(mu, kappa, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy.special import i0 >>> plt.hist(s, 50, normed=True) >>> x = np.linspace(-np.pi, np.pi, num=51) >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa)) >>> plt.plot(x, y, linewidth=2, color='r') >>> plt.show() RandomState.vonmises (line 2551) standard_t(df, size=None) Draw samples from a standard Student's t distribution with `df` degrees of freedom. A special case of the hyperbolic distribution. As `df` gets large, the result resembles that of the standard normal distribution (`standard_normal`). Parameters ---------- df : int or array_like of ints Degrees of freedom, should be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard Student's t distribution. Notes ----- The probability density function for the t distribution is .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df} \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2} The t test is based on an assumption that the data come from a Normal distribution. The t test provides a way to test whether the sample mean (that is the mean calculated from the data) is a good estimate of the true mean. The derivation of the t-distribution was first published in 1908 by William Gosset while working for the Guinness Brewery in Dublin. Due to proprietary issues, he had to publish under a pseudonym, and so he used the name Student. References ---------- .. [1] Dalgaard, Peter, "Introductory Statistics With R", Springer, 2002. .. [2] Wikipedia, "Student's t-distribution" http://en.wikipedia.org/wiki/Student's_t-distribution Examples -------- From Dalgaard page 83 [1]_, suppose the daily energy intake for 11 women in Kj is: >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \ ... 7515, 8230, 8770]) Does their energy intake deviate systematically from the recommended value of 7725 kJ? We have 10 degrees of freedom, so is the sample mean within 95% of the recommended value? >>> s = np.random.standard_t(10, size=100000) >>> np.mean(intake) 6753.636363636364 >>> intake.std(ddof=1) 1142.1232221373727 Calculate the t statistic, setting the ddof parameter to the unbiased value so the divisor in the standard deviation will be degrees of freedom, N-1. >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake))) >>> import matplotlib.pyplot as plt >>> h = plt.hist(s, bins=100, normed=True) For a one-sided t-test, how far out in the distribution does the t statistic appear? >>> np.sum(s>> s = np.random.standard_cauchy(1000000) >>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well >>> plt.hist(s, bins=100) >>> plt.show() RandomState.standard_cauchy (line 2381) noncentral_chisquare(df, nonc, size=None) Draw samples from a noncentral chi-square distribution. The noncentral :math:`\chi^2` distribution is a generalisation of the :math:`\chi^2` distribution. Parameters ---------- df : int or array_like of ints Degrees of freedom, should be > 0 as of NumPy 1.10.0, should be > 1 for earlier versions. nonc : float or array_like of floats Non-centrality, should be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` and ``nonc`` are both scalars. Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral chi-square distribution. Notes ----- The probability density function for the noncentral Chi-square distribution is .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0} \frac{e^{-nonc/2}(nonc/2)^{i}}{i!} \P_{Y_{df+2i}}(x), where :math:`Y_{q}` is the Chi-square with q degrees of freedom. In Delhi (2007), it is noted that the noncentral chi-square is useful in bombing and coverage problems, the probability of killing the point target given by the noncentral chi-squared distribution. References ---------- .. [1] Delhi, M.S. Holla, "On a noncentral chi-square distribution in the analysis of weapon systems effectiveness", Metrika, Volume 15, Number 1 / December, 1970. .. [2] Wikipedia, "Noncentral chi-square distribution" http://en.wikipedia.org/wiki/Noncentral_chi-square_distribution Examples -------- Draw values from the distribution and plot the histogram >>> import matplotlib.pyplot as plt >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000), ... bins=200, normed=True) >>> plt.show() Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare. >>> plt.figure() >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000), ... bins=np.arange(0., 25, .1), normed=True) >>> values2 = plt.hist(np.random.chisquare(3, 100000), ... bins=np.arange(0., 25, .1), normed=True) >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob') >>> plt.show() Demonstrate how large values of non-centrality lead to a more symmetric distribution. >>> plt.figure() >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000), ... bins=200, normed=True) >>> plt.show() RandomState.noncentral_chisquare (line 2277) chisquare(df, size=None) Draw samples from a chi-square distribution. When `df` independent random variables, each with standard normal distributions (mean 0, variance 1), are squared and summed, the resulting distribution is chi-square (see Notes). This distribution is often used in hypothesis testing. Parameters ---------- df : int or array_like of ints Number of degrees of freedom. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized chi-square distribution. Raises ------ ValueError When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``) is given. Notes ----- The variable obtained by summing the squares of `df` independent, standard normally distributed random variables: .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i is chi-square distributed, denoted .. math:: Q \sim \chi^2_k. The probability density function of the chi-squared distribution is .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)} x^{k/2 - 1} e^{-x/2}, where :math:`\Gamma` is the gamma function, .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt. References ---------- .. [1] NIST "Engineering Statistics Handbook" http://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm Examples -------- >>> np.random.chisquare(2,4) array([ 1.89920014, 9.00867716, 3.13710533, 5.62318272]) RandomState.chisquare (line 2196) noncentral_f(dfnum, dfden, nonc, size=None) Draw samples from the noncentral F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters > 1. `nonc` is the non-centrality parameter. Parameters ---------- dfnum : int or array_like of ints Parameter, should be > 1. dfden : int or array_like of ints Parameter, should be > 1. nonc : float or array_like of floats Parameter, should be >= 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum``, ``dfden``, and ``nonc`` are all scalars. Otherwise, ``np.broadcast(dfnum, dfden, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral Fisher distribution. Notes ----- When calculating the power of an experiment (power = probability of rejecting the null hypothesis when a specific alternative is true) the non-central F statistic becomes important. When the null hypothesis is true, the F statistic follows a central F distribution. When the null hypothesis is not true, then it follows a non-central F statistic. References ---------- .. [1] Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/NoncentralF-Distribution.html .. [2] Wikipedia, "Noncentral F-distribution", http://en.wikipedia.org/wiki/Noncentral_F-distribution Examples -------- In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral F distribution. We need to calculate the area in the tail of the distribution that exceeds the value of the F distribution for the null hypothesis. We'll plot the two probability distributions for comparison. >>> dfnum = 3 # between group deg of freedom >>> dfden = 20 # within groups degrees of freedom >>> nonc = 3.0 >>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000) >>> NF = np.histogram(nc_vals, bins=50, normed=True) >>> c_vals = np.random.f(dfnum, dfden, 1000000) >>> F = np.histogram(c_vals, bins=50, normed=True) >>> plt.plot(F[1][1:], F[0]) >>> plt.plot(NF[1][1:], NF[0]) >>> plt.show() RandomState.noncentral_f (line 2099) f(dfnum, dfden, size=None) Draw samples from an F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters should be greater than zero. The random variate of the F distribution (also known as the Fisher distribution) is a continuous probability distribution that arises in ANOVA tests, and is the ratio of two chi-square variates. Parameters ---------- dfnum : int or array_like of ints Degrees of freedom in numerator. Should be greater than zero. dfden : int or array_like of ints Degrees of freedom in denominator. Should be greater than zero. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum`` and ``dfden`` are both scalars. Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Fisher distribution. See Also -------- scipy.stats.f : probability density function, distribution or cumulative density function, etc. Notes ----- The F statistic is used to compare in-group variances to between-group variances. Calculating the distribution depends on the sampling, and so it is a function of the respective degrees of freedom in the problem. The variable `dfnum` is the number of samples minus one, the between-groups degrees of freedom, while `dfden` is the within-groups degrees of freedom, the sum of the number of samples in each group minus the number of groups. References ---------- .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill, Fifth Edition, 2002. .. [2] Wikipedia, "F-distribution", http://en.wikipedia.org/wiki/F-distribution Examples -------- An example from Glantz[1], pp 47-40: Two groups, children of diabetics (25 people) and children from people without diabetes (25 controls). Fasting blood glucose was measured, case group had a mean value of 86.1, controls had a mean value of 82.2. Standard deviations were 2.09 and 2.49 respectively. Are these data consistent with the null hypothesis that the parents diabetic status does not affect their children's blood glucose levels? Calculating the F statistic from the data gives a value of 36.01. Draw samples from the distribution: >>> dfnum = 1. # between group degrees of freedom >>> dfden = 48. # within groups degrees of freedom >>> s = np.random.f(dfnum, dfden, 1000) The lower bound for the top 1% of the samples is : >>> sort(s)[-10] 7.61988120985 So there is about a 1% chance that the F statistic will exceed 7.62, the measured value is 36, so the null hypothesis is rejected at the 1% level. RandomState.f (line 1992) gamma(shape, scale=1.0, size=None) Draw samples from a Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, `shape` (sometimes designated "k") and `scale` (sometimes designated "theta"), where both parameters are > 0. Parameters ---------- shape : float or array_like of floats The shape of the gamma distribution. Should be greater than zero. scale : float or array_like of floats, optional The scale of the gamma distribution. Should be greater than zero. Default is equal to 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", http://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 2. # mean=4, std=2*sqrt(2) >>> s = np.random.gamma(shape, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps >>> count, bins, ignored = plt.hist(s, 50, normed=True) >>> y = bins**(shape-1)*(np.exp(-bins/scale) / ... (sps.gamma(shape)*scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') >>> plt.show() RandomState.gamma (line 1896) standard_gamma(shape, size=None) Draw samples from a standard Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated "k") and scale=1. Parameters ---------- shape : float or array_like of floats Parameter, should be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` is a scalar. Otherwise, ``np.array(shape).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", http://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 1. # mean and width >>> s = np.random.standard_gamma(shape, 1000000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps >>> count, bins, ignored = plt.hist(s, 50, normed=True) >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ \ ... (sps.gamma(shape) * scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') >>> plt.show() RandomState.standard_gamma (line 1810) standard_exponential(size=None) Draw samples from the standard exponential distribution. `standard_exponential` is identical to the exponential distribution with a scale parameter of 1. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : float or ndarray Drawn samples. Examples -------- Output a 3x8000 array: >>> n = np.random.standard_exponential((3, 8000)) RandomState.standard_exponential (line 1779) normal(loc=0.0, scale=1.0, size=None) Draw random samples from a normal (Gaussian) distribution. The probability density function of the normal distribution, first derived by De Moivre and 200 years later by both Gauss and Laplace independently [2]_, is often called the bell curve because of its characteristic shape (see the example below). The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution of samples influenced by a large number of tiny, random disturbances, each with its own unique distribution [2]_. Parameters ---------- loc : float or array_like of floats Mean ("centre") of the distribution. scale : float or array_like of floats Standard deviation (spread or "width") of the distribution. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized normal distribution. See Also -------- scipy.stats.norm : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gaussian distribution is .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }} e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} }, where :math:`\mu` is the mean and :math:`\sigma` the standard deviation. The square of the standard deviation, :math:`\sigma^2`, is called the variance. The function has its peak at the mean, and its "spread" increases with the standard deviation (the function reaches 0.607 times its maximum at :math:`x + \sigma` and :math:`x - \sigma` [2]_). This implies that `numpy.random.normal` is more likely to return samples lying close to the mean, rather than those far away. References ---------- .. [1] Wikipedia, "Normal distribution", http://en.wikipedia.org/wiki/Normal_distribution .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability, Random Variables and Random Signal Principles", 4th ed., 2001, pp. 51, 51, 125. Examples -------- Draw samples from the distribution: >>> mu, sigma = 0, 0.1 # mean and standard deviation >>> s = np.random.normal(mu, sigma, 1000) Verify the mean and the variance: >>> abs(mu - np.mean(s)) < 0.01 True >>> abs(sigma - np.std(s, ddof=1)) < 0.01 True Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, normed=True) >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) * ... np.exp( - (bins - mu)**2 / (2 * sigma**2) ), ... linewidth=2, color='r') >>> plt.show() RandomState.normal (line 1547) standard_normal(size=None) Draw samples from a standard Normal distribution (mean=0, stdev=1). Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : float or ndarray Drawn samples. Examples -------- >>> s = np.random.standard_normal(8000) >>> s array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, #random -0.38672696, -0.4685006 ]) #random >>> s.shape (8000,) >>> s = np.random.standard_normal(size=(3, 4, 2)) >>> s.shape (3, 4, 2) RandomState.standard_normal (line 1514) random_integers(low, high=None, size=None) Random integers of type np.int between `low` and `high`, inclusive. Return random integers of type np.int from the "discrete uniform" distribution in the closed interval [`low`, `high`]. If `high` is None (the default), then results are from [1, `low`]. The np.int type translates to the C long type used by Python 2 for "short" integers and its precision is platform dependent. This function has been deprecated. Use randint instead. .. deprecated:: 1.11.0 Parameters ---------- low : int Lowest (signed) integer to be drawn from the distribution (unless ``high=None``, in which case this parameter is the *highest* such integer). high : int, optional If provided, the largest (signed) integer to be drawn from the distribution (see above for behavior if ``high=None``). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : int or ndarray of ints `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. See Also -------- random.randint : Similar to `random_integers`, only for the half-open interval [`low`, `high`), and 0 is the lowest value if `high` is omitted. Notes ----- To sample from N evenly spaced floating-point numbers between a and b, use:: a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.) Examples -------- >>> np.random.random_integers(5) 4 >>> type(np.random.random_integers(5)) >>> np.random.random_integers(5, size=(3,2)) array([[5, 4], [3, 3], [4, 5]]) Choose five random numbers from the set of five evenly-spaced numbers between 0 and 2.5, inclusive (*i.e.*, from the set :math:`{0, 5/8, 10/8, 15/8, 20/8}`): >>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4. array([ 0.625, 1.25 , 0.625, 0.625, 2.5 ]) Roll two six sided dice 1000 times and sum the results: >>> d1 = np.random.random_integers(1, 6, 1000) >>> d2 = np.random.random_integers(1, 6, 1000) >>> dsums = d1 + d2 Display results as a histogram: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(dsums, 11, normed=True) >>> plt.show() RandomState.random_integers (line 1417) randn(d0, d1, ..., dn) Return a sample (or samples) from the "standard normal" distribution. If positive, int_like or int-convertible arguments are provided, `randn` generates an array of shape ``(d0, d1, ..., dn)``, filled with random floats sampled from a univariate "normal" (Gaussian) distribution of mean 0 and variance 1 (if any of the :math:`d_i` are floats, they are first converted to integers by truncation). A single float randomly sampled from the distribution is returned if no argument is provided. This is a convenience function. If you want an interface that takes a tuple as the first argument, use `numpy.random.standard_normal` instead. Parameters ---------- d0, d1, ..., dn : int, optional The dimensions of the returned array, should be all positive. If no argument is given a single Python float is returned. Returns ------- Z : ndarray or float A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from the standard normal distribution, or a single such float if no parameters were supplied. See Also -------- random.standard_normal : Similar, but takes a tuple as its argument. Notes ----- For random samples from :math:`N(\mu, \sigma^2)`, use: ``sigma * np.random.randn(...) + mu`` Examples -------- >>> np.random.randn() 2.1923875335537315 #random Two-by-four array of samples from N(3, 6.25): >>> 2.5 * np.random.randn(2, 4) + 3 array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], #random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) #random RandomState.randn (line 1360) rand(d0, d1, ..., dn) Random values in a given shape. Create an array of the given shape and populate it with random samples from a uniform distribution over ``[0, 1)``. Parameters ---------- d0, d1, ..., dn : int, optional The dimensions of the returned array, should all be positive. If no argument is given a single Python float is returned. Returns ------- out : ndarray, shape ``(d0, d1, ..., dn)`` Random values. See Also -------- random Notes ----- This is a convenience function. If you want an interface that takes a shape-tuple as the first argument, refer to np.random.random_sample . Examples -------- >>> np.random.rand(3,2) array([[ 0.14022471, 0.96360618], #random [ 0.37601032, 0.25528411], #random [ 0.49313049, 0.94909878]]) #random RandomState.rand (line 1316) uniform(low=0.0, high=1.0, size=None) Draw samples from a uniform distribution. Samples are uniformly distributed over the half-open interval ``[low, high)`` (includes low, but excludes high). In other words, any value within the given interval is equally likely to be drawn by `uniform`. Parameters ---------- low : float or array_like of floats, optional Lower boundary of the output interval. All values generated will be greater than or equal to low. The default value is 0. high : float or array_like of floats Upper boundary of the output interval. All values generated will be less than high. The default value is 1.0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``low`` and ``high`` are both scalars. Otherwise, ``np.broadcast(low, high).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized uniform distribution. See Also -------- randint : Discrete uniform distribution, yielding integers. random_integers : Discrete uniform distribution over the closed interval ``[low, high]``. random_sample : Floats uniformly distributed over ``[0, 1)``. random : Alias for `random_sample`. rand : Convenience function that accepts dimensions as input, e.g., ``rand(2,2)`` would generate a 2-by-2 array of floats, uniformly distributed over ``[0, 1)``. Notes ----- The probability density function of the uniform distribution is .. math:: p(x) = \frac{1}{b - a} anywhere within the interval ``[a, b)``, and zero elsewhere. When ``high`` == ``low``, values of ``low`` will be returned. If ``high`` < ``low``, the results are officially undefined and may eventually raise an error, i.e. do not rely on this function to behave when passed arguments satisfying that inequality condition. Examples -------- Draw samples from the distribution: >>> s = np.random.uniform(-1,0,1000) All values are within the given interval: >>> np.all(s >= -1) True >>> np.all(s < 0) True Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 15, normed=True) >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r') >>> plt.show() RandomState.uniform (line 1210) choice(a, size=None, replace=True, p=None) Generates a random sample from a given 1-D array .. versionadded:: 1.7.0 Parameters ----------- a : 1-D array-like or int If an ndarray, a random sample is generated from its elements. If an int, the random sample is generated as if a were np.arange(a) size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. replace : boolean, optional Whether the sample is with or without replacement p : 1-D array-like, optional The probabilities associated with each entry in a. If not given the sample assumes a uniform distribution over all entries in a. Returns -------- samples : single item or ndarray The generated random samples Raises ------- ValueError If a is an int and less than zero, if a or p are not 1-dimensional, if a is an array-like of size 0, if p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the sample size is greater than the population size See Also --------- randint, shuffle, permutation Examples --------- Generate a uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3) array([0, 3, 4]) >>> #This is equivalent to np.random.randint(0,5,3) Generate a non-uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) array([3, 3, 0]) Generate a uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False) array([3,1,0]) >>> #This is equivalent to np.random.permutation(np.arange(5))[:3] Generate a non-uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) array([2, 3, 0]) Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance: >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher'] >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3]) array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], dtype='|S11') RandomState.choice (line 1028) bytes(length) Return random bytes. Parameters ---------- length : int Number of random bytes. Returns ------- out : str String of length `length`. Examples -------- >>> np.random.bytes(10) ' eh\x85\x022SZ\xbf\xa4' #random RandomState.bytes (line 999) randint(low, high=None, size=None, dtype='l') Return random integers from `low` (inclusive) to `high` (exclusive). Return random integers from the "discrete uniform" distribution of the specified dtype in the "half-open" interval [`low`, `high`). If `high` is None (the default), then results are from [0, `low`). Parameters ---------- low : int Lowest (signed) integer to be drawn from the distribution (unless ``high=None``, in which case this parameter is one above the *highest* such integer). high : int, optional If provided, one above the largest (signed) integer to be drawn from the distribution (see above for behavior if ``high=None``). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result. All dtypes are determined by their name, i.e., 'int64', 'int', etc, so byteorder is not available and a specific precision may have different C types depending on the platform. The default value is 'np.int'. .. versionadded:: 1.11.0 Returns ------- out : int or ndarray of ints `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. See Also -------- random.random_integers : similar to `randint`, only for the closed interval [`low`, `high`], and 1 is the lowest value if `high` is omitted. In particular, this other one is the one to use to generate uniformly distributed discrete non-integers. Examples -------- >>> np.random.randint(2, size=10) array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) >>> np.random.randint(1, size=10) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) Generate a 2 x 4 array of ints between 0 and 4, inclusive: >>> np.random.randint(5, size=(2, 4)) array([[4, 0, 2, 1], [3, 2, 2, 0]]) RandomState.randint (line 905) tomaxint(size=None) Random integers between 0 and ``sys.maxint``, inclusive. Return a sample of uniformly distributed random integers in the interval [0, ``sys.maxint``]. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : ndarray Drawn samples, with shape `size`. See Also -------- randint : Uniform sampling over a given half-open interval of integers. random_integers : Uniform sampling over a given closed interval of integers. Examples -------- >>> RS = np.random.mtrand.RandomState() # need a RandomState object >>> RS.tomaxint((2,2,2)) array([[[1170048599, 1600360186], [ 739731006, 1947757578]], [[1871712945, 752307660], [1601631370, 1479324245]]]) >>> import sys >>> sys.maxint 2147483647 >>> RS.tomaxint((2,2,2)) < sys.maxint array([[[ True, True], [ True, True]], [[ True, True], [ True, True]]], dtype=bool) RandomState.tomaxint (line 858) random_sample(size=None) Return random floats in the half-open interval [0.0, 1.0). Results are from the "continuous uniform" distribution over the stated interval. To sample :math:`Unif[a, b), b > a` multiply the output of `random_sample` by `(b-a)` and add `a`:: (b - a) * random_sample() + a Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : float or ndarray of floats Array of random floats of shape `size` (unless ``size=None``, in which case a single float is returned). Examples -------- >>> np.random.random_sample() 0.47108547995356098 >>> type(np.random.random_sample()) >>> np.random.random_sample((5,)) array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) Three-by-two array of random numbers from [-5, 0): >>> 5 * np.random.random_sample((3, 2)) - 5 array([[-3.99149989, -0.52338984], [-2.99091858, -0.79479508], [-1.23204345, -1.75224494]]) RandomState.random_sample (line 814)noncentral_chisquarestandard_exponential/builddir/build/BUILD/numpy-1.13.3/numpy/random/mtrand/mtrand.pyx/builddir/build/BUILD/numpy-1.13.3/numpy/random/mtrand/randint_helpers.pxisum(pvals[:-1]) > 1.0covariance is not positive-semidefinite.check_valid must equal 'warn', 'raise', or 'ignore'mean and cov must have same lengthcov must be 2 dimensional and squaremean must be 1 dimensionalnumpy.dualp >= 1.0p <= 0.0ngood + nbad < nsamplensample < 1nbad < 0ngood < 0p > 1.0p < 0.0a <= 1.0lam value too large.lam value too largelam < 0n <= 0p is nanp > 1p < 0n < 0left == rightmode > rightleft > modescale <= 0.0mean <= 0.0scale <= 0mean <= 0scale < 0.0sigma < 0.0sigma < 0a < 0kappa < 0df <= 0nonc < 0dfnum <= 1dfden <= 0dfnum <= 0shape < 0b <= 0pnlfdbaTLa <= 0scale < 0This function is deprecated. Please call randint({low}, {high} + 1) insteadThis function is deprecated. Please call randint(1, {low} + 1) insteadRange exceeds valid boundsFewer non-zero entries in p than sizeCannot take a larger sample than population when 'replace=False'probabilities do not sum to 1probabilities are not non-negativea and p must have same sizep must be 1-dimensionala must be non-emptya must be 1-dimensionala must be greater than 0a must be 1-dimensional or an integerlow >= highhigh is out of bounds for %slow is out of bounds for %sUnsupported dtype "%s" for randintstate must be 624 longsalgorithm must be 'MT19937'Seed must be between 0 and 2**32 - 1size is not compatible with inputsnumpy.core.multiarray failed to import ++++ ++P +x ++x+++ +++ +++ +0++x + ++0++++++0++h +p ++h +p +X++x ++x +X+++x +++8 ++x ++x ++x ++ +0++ +0++ +0+++++0+++0++ ++X++++++++( ++x ++++`++8+++++ ++ +++++X ++ ++ ++H++ ++H++ ++H++ ++H++ ++H++ ++H++ ++H++ ++H++ ++H++ +H+ *'@+ڭ*8+Э* 0+* (+*  +* +* +*+x* +r*+h* +X* +H* +8* +(* +* +* +* +* +ج*+ͬ*+Ǭ*+*+* +*+*x+*p+p*h+X* `+P*X+H*P+8* H+(* @+* 8+*0+* (+*  +Ы* +*+*%+@*#+*4+*)+*+@*K+*B+*+*+`*%+*_+* +*`+P*+@* +*+*e+*+*s x+* p+}*@ h+}*`+y*X+`y*P+ r*5H+q*(@+f* 8+f*(0+c*q(+b* +U*Y +@U*-+`R*+ R*'+`H* +@H*+`=* +@=*+ 0* +/*%+$* +$*"+*+`*-+ *, +*(+ *+*#+ ) +)!+ ) x+)p+)h+) `+) X+)P+`)b H+@) @+)r 8+)0+)(+`)! + )$ +)"+ )+)!+`)y +@) +@w)  +w)# +m)M  +`m)! +`_)  + _)* +@S)  + S)  +`J) +@J) +@)y  +@)" +@:)< +:)' ++)8x ++)"p + ) h + ),` +@)&X +)$P +`) H + )"@ +`(8 +@( 0 +(A( +($ +( +*% +p* +P* + *# +* +* +Ȱ*  +*& +p* +P* +0* +* +* +*# +* +*# +@*A +*& +Ю* +*Gx + *Lp +* h +*` +(X + ( P +( H +*@ +(8 +(0 +(( +p( +* +(  +`(  +( +(  + (  +P(  +(  +(  +( +@(  +(  +(  +(  +0(  + (  +(  +(  +p(  +( +(x +*p +(h +(` +( X +(P +(H +7(@ +(8 + ( 0 +(( +0( +( +* +( +(  +( +( +(  +( +( +( +`(  +(  +)( +( +( +( +( +"( +( +* +(x +(p +(h +(` +( X +(P +(H +@(@ +(8 +( 0 +(( +( +P(  +* +( +( +(  +( +( +(  +(  +( +( + ( +( +`( +( +( +( +( +( +( +(x +(p +(h +(` +( X +(P +( H +}(@ +( 8 +(0 +*( +( +( +x( +s( +(  +(+( +( +( +( +n(+(+(+i(+d(+(+(+@( +`(+*+_(+Z(x+(p+U(h+(`+(X+P(P+( H+(@+(8+x(0+((+( +( +(+*+(+0( +p(+0(+(+K(+(+z(+F(+h(+t(+(+ (+(+n(+h(+( +(x+`(p+X(h+( `+p( X+b(P+(H+`( @+A(8+<(0+\((+(  +7(+( +V(+P(+2(+P(+H(+-(+((+#(+(+P(+(+( +J(+@(+P( +(+(+p( +(x+( p+(h+(`+(X+(P+D(H+8(@+(8+(0+@( (+( +(+0( +0(+>(+ (ۧ0**p*@*E&Ю *`" ((p`c(p "@(( (F@(pE(DP((0@(q w( s(*@f(Ӥ@\a(VY(`W(NI@M(-`B(0@5(@  *(D?@"(ؤ o(٠ @ (&@5(' *'0'آp`''٣' '0'`'@`'_v'$h'ͥ \';`S'I'rC'j`5'p,*'X`'M'$'$'`'`ء}(pf(ġ`q@(p[(K(q (^ (yD`(pP(\eGA$3a1ЭЭGA$3a1ԞܞGA$3a1Э GA$3p864fGA$gcc 8.2.1 20180905Ҟ GA*GOW*EfGA*ҞGA+stack_clashfGA*cf_protectionҞGA+GLIBCXX_ASSERTIONSfGA*FORTIFYҞGA*GA! GA* GA!stack_realignf GA$3p864fҞ GA*GOW*Ef9rGA+stack_clashGA+GLIBCXX_ASSERTIONSGA!stack_realign GA*GOW*E@r}sGA+stack_clashGA+GLIBCXX_ASSERTIONSGA!stack_realign GA*GOW*EsҞGA+stack_clashGA+GLIBCXX_ASSERTIONSGA!stack_realignGA$3a1GA$3a1ܞmtrand.so-1.13.3-1.el8.x86_64.debugc7zXZִF!t//? ]?Eh=ڊ2Nb9!>-YL"; =ֿ+DtOD"!u,jGO+ "oC;(&"m2(؂w8:.0Gq5)tתXf?Zk1BRn%n`\4L0O;&Z궋Qu66C\@tCz,RٵAL4m1P[ mOy2AxI4"^12~K{L_9Ulx)?=nNC 6n 8 F*:OL&0v  n]  +35ԯ _t ȋeydoV)VJeX]P{cWCf_,`ev' 0yEM˕o;1MA} J@nBդ|jZA1on]̇V#'UE la@Il:GſY+q~[.<ˏ]Η5ED.& !'bQڪ9qA^>< 2\sȡJ3zb͵?J1^S[ﯧ%^ٖzEeZv-#m9JUoR//SZIȇO : {\&!kK, f c<ҏqs"bǠXV ΠHfjdG7Hr{dB5>n%.ꂞב8sfe0h(+(n\w!1e.[d "Ŀ_+_ TUvh#VF ~ q.'(mdԄ4 "bmUWXзJ6C~"8/w} omQKP0swy $1-<ζ;KCI XD ow÷"ID2:.MKdUIv.m3hNB!bzl&'*4 jņV>7i&w"n>U_˱FyWy-h ;ih6cl;i?i&ITV6x Fw Auu }~EsNƯjR l,6D${LHS*_ !O ) {ݖM⪘)ATpk%H? oƅnCqۘpܚXvy0KWڔ e6lFeQhbx-͋׃m3-؆t: GQ{a& MSo=2bU DZ(08tT˓@H\yhANP utŬu| X׌/|sPQHn3I,\ɬ6"B2t-%:crZ=A49t3/,}kr߰]B[*¾rY}G]O ҳ0 /?(p J6:]|QzcHUJPTnFO4ϙs'P1J64d7' ˮ.r1XG_xn=+Q :ҢHM-Un:soE6QTh>3a=zP 郁C46*R^7 ط ƀM}q߿$ 1W I]Fx2Lz;`䐽k9Y:-f+jD̀h 6I^'?jgYZ.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.plt.sec.text.fini.rodata.eh_frame_hdr.eh_frame.note.gnu.property.init_array.fini_array.data.rel.ro.dynamic.got.data.bss.gnu.build.attributes.gnu_debuglink.gnu_debugdata $o((( 07 8o##Eo$$@T$$Hi^B hc nФФ wЭЭ}ԞԞ p pp,/@@ h&hp&px&x&&p' *  k H  (@ $ (